Warehouse Stock Clearance Sale

Grab a bargain today!


Sign Up for Fishpond's Best Deals Delivered to You Every Day
Go
Data Analysis Using SQL ­and Excel, 2nd Edition

Rating
113 Ratings by Goodreads
Already own it? Write a review
Format
Paperback, 800 pages
Published
United States, 1 December 2015

GORDON S. LINOFF has been working with databases for more decades than he cares to admit. He starting learning about SQL by memorizing the SQL 92 standard while leading a development team (at the now-defunct Thinking Machines Corporation) writing the first high-performance database focused on the complex queries needed for decision support. After that endeavor, Gordon co-founded Data Miners in 1998, a consulting practice devoted to data mining, analytics, and big data. A constant theme in his work is data-and often data in relational databases. His SQL skills have only gotten stronger over the years. In 2014, he was the top contributor to Stack Overflow, the leading question-and-answer-site for technical questions. His other books include the bestselling Data Mining Techniques, Third Edition; Mastering Data Mining; and Mining the Web-which focus on data mining and analysis. This book follows on the popularity of the first edition, with a practical focus on how to actually get and interpret results.


Foreword xxxiii Introduction xxxvii Chapter 1 A Data Miner Looks at SQL 1 Chapter 2 What's in a Table? Getting Started with Data Exploration 49 Chapter 3 How Different Is Different? 97 Chapter 4 Where Is It All Happening? Location, Location, Location 145 Chapter 5 It's a Matter of Time 197 Chapter 6 How Long Will Customers Last? Survival Analysis to Understand Customers and Their Value 255 Chapter 7 Factors Affecting Survival: The What and Why of Customer Tenure 315 Chapter 8 Customer Purchases and Other Repeated Events 367 Chapter 9 What's in a Shopping Cart? Market Basket Analysis 421 Chapter 10 Association Rules and Beyond 465 Chapter 11 Data Mining Models in SQL 507 Chapter 12 The Best-Fit Line: Linear Regression Models 561 Chapter 13 Building Customer Signatures for Further Analysis 609 Chapter 14 Performance Is the Issue: Using SQL Effectively 655 Appendix Equivalent Constructs Among Databases 703 Index 731

Show more

Our Price
HK$404
Ships from Australia Estimated delivery date: 29th May - 6th Jun from Australia
Free Shipping Worldwide

Buy Together
+
Buy together with OCA Java SE 8 Programmer I Study Guide (Exam 1Z0-808) at a great price!
Buy Together
HK$663
Elsewhere Price
HK$749.83
You Save HK$86.83 (12%)

Product Description

GORDON S. LINOFF has been working with databases for more decades than he cares to admit. He starting learning about SQL by memorizing the SQL 92 standard while leading a development team (at the now-defunct Thinking Machines Corporation) writing the first high-performance database focused on the complex queries needed for decision support. After that endeavor, Gordon co-founded Data Miners in 1998, a consulting practice devoted to data mining, analytics, and big data. A constant theme in his work is data-and often data in relational databases. His SQL skills have only gotten stronger over the years. In 2014, he was the top contributor to Stack Overflow, the leading question-and-answer-site for technical questions. His other books include the bestselling Data Mining Techniques, Third Edition; Mastering Data Mining; and Mining the Web-which focus on data mining and analysis. This book follows on the popularity of the first edition, with a practical focus on how to actually get and interpret results.


Foreword xxxiii Introduction xxxvii Chapter 1 A Data Miner Looks at SQL 1 Chapter 2 What's in a Table? Getting Started with Data Exploration 49 Chapter 3 How Different Is Different? 97 Chapter 4 Where Is It All Happening? Location, Location, Location 145 Chapter 5 It's a Matter of Time 197 Chapter 6 How Long Will Customers Last? Survival Analysis to Understand Customers and Their Value 255 Chapter 7 Factors Affecting Survival: The What and Why of Customer Tenure 315 Chapter 8 Customer Purchases and Other Repeated Events 367 Chapter 9 What's in a Shopping Cart? Market Basket Analysis 421 Chapter 10 Association Rules and Beyond 465 Chapter 11 Data Mining Models in SQL 507 Chapter 12 The Best-Fit Line: Linear Regression Models 561 Chapter 13 Building Customer Signatures for Further Analysis 609 Chapter 14 Performance Is the Issue: Using SQL Effectively 655 Appendix Equivalent Constructs Among Databases 703 Index 731

Show more
Product Details
EAN
9781119021438
ISBN
111902143X
Dimensions
23.4 x 18.5 x 3.6 centimeters (0.96 kg)

Table of Contents

Foreword xxxiii

Introduction xxxvii

Chapter 1 A Data Miner Looks at SQL 1

Databases, SQL, and Big Data 2

Picturing the Structure of the Data 6

Picturing Data Analysis Using Dataflows 16

SQL Queries 21

Subqueries and Common Table Expressions Are Our Friends 36

Lessons Learned 47

Chapter 2 What’s in a Table? Getting Started with Data Exploration 49

What Is Data Exploration? 50

Excel for Charting 51

Sparklines 65

What Values Are in the Columns? 68

More Values to Explore—Min, Max, and Mode 79

Exploring String Values 81

Exploring Values in Two Columns 86

From Summarizing One Column to Summarizing All Columns 90

Lessons Learned 96

Chapter 3 How Different Is Different? 97

Basic Statistical Concepts 98

How Different Are the Averages? 105

Sampling from a Table 110

Counting Possibilities 115

Ratios and Their Statistics 128

Chi-Square 132

What Months and Payment Types Have Unusual Affinities for Which Types of Products? 140

Lessons Learned 143

Chapter 4 Where Is It All Happening? Location, Location, Location 145

Latitude and Longitude 146

Census Demographics 160

Geographic Hierarchies 172

Mapping in Excel 188

Lessons Learned 194

Chapter 5 It’s a Matter of Time 197

Dates and Times in Databases 198

Starting to Investigate Dates 204

How Long Between Two Dates? 218

Year-over-Year Comparisons 229

Counting Active Customers by Day 239

Simple Chart Animation in Excel 247

Lessons Learned 254

Chapter 6 How Long Will Customers Last? Survival Analysis to Understand Customers and Their Value 255

Background on Survival Analysis 256

The Hazard Calculation 260

Survival and Retention 269

Comparing Different Groups of Customers 280

Comparing Survival over Time 287

Important Measures Derived from Survival 293

Using Survival for Customer Value Calculations 298

Forecasting 308

Lessons Learned 314

Chapter 7 Factors Affecting Survival: The What and Why of Customer Tenure 315

Which Factors Are Important and When 316

Left Truncation 328

Time Windowing 336

Competing Risks 342

Before and After 353

Lessons Learned 366

Chapter 8 Customer Purchases and Other Repeated Events 367

Identifying Customers 368

RFM Analysis 393

Which Households Are Increasing Purchase Amounts Over Time? 404

Time to Next Event 416

Lessons Learned 420

Chapter 9 What’s in a Shopping Cart? Market Basket Analysis 421

Exploring the Products 422

Products and Customer Worth 437

Product Geographic Distribution 448

Which Customers Have Particular Products? 451

Lessons Learned 463

Chapter 10 Association Rules and Beyond 465

Item Sets 466

The Simplest Association Rules 480

One-Way Association Rules 483

Two-Way Associations 489

Extending Association Rules 499

Lessons Learned 506

Chapter 11 Data Mining Models in SQL 507

Introduction to Directed Data Mining 508

Look-Alike Models 515

Lookup Model for Most Popular Product 522

Lookup Model for Order Size 528

Lookup Model for Probability of Response 534

Naive Bayesian Models (Evidence Models) 546

Lessons Learned 559

Chapter 12 The Best-Fit Line: Linear Regression Models 561

The Best-Fit Line 562

Measuring Goodness of Fit Using R2 581

Direct Calculation of Best-Fit Line Coefficients 584

Weighted Linear Regression 592

More Than One Input Variable 600

Lessons Learned 607

Chapter 13 Building Customer Signatures for Further Analysis 609

What Is a Customer Signature? 610

Designing Customer Signatures 617

Operations to Build Customer Signatures 622

Extracting Features 639

Summarizing Customer Behaviors 644

Lessons Learned 653

Chapter 14 Performance Is the Issue: Using SQL Effectively 655

Query Engines and Performance 656

Considerations When Thinking About Performance 660

Performance: Its Meaning and Measurement 663

Performance Improvement 101 665

Using Indexes Effectively 668

When OR Is a Bad Thing 683

Pros and Cons: Different Ways of Expressing the Same Thing 686

Window Functions 694

Lessons Learned 701

Appendix Equivalent Constructs Among Databases 703

Index 731

About the Author

GORDON S. LINOFF has been working with databases for more decades than he cares to admit. He starting learning about SQL by memorizing the SQL 92 standard while leading a development team (at the now-defunct Thinking Machines Corporation) writing the first high-performance database focused on the complex queries needed for decision support.

After that endeavor, Gordon co-founded Data Miners in 1998, a consulting practice devoted to data mining, analytics, and big data. A constant theme in his work is data—and often data in relational databases. His SQL skills have only gotten stronger over the years. In 2014, he was the top contributor to Stack Overflow, the leading question-and-answer-site for technical questions.

His other books include the bestselling Data Mining Techniques, Third Edition; Mastering Data Mining; and Mining the Web—which focus on data mining and analysis. This book follows on the popularity of the first edition, with a practical focus on how to actually get and interpret results.

Show more
Review this Product
Ask a Question About this Product More...
 
Look for similar items by category
People also searched for
Item ships from and is sold by Fishpond Retail Limited.

Back to top