Chapter 1: Introduction to data science with python
1.1 What is data science?
1.2 Why Python?
1.3 Python learning resources.
1.4 Python environment and editors (Jupyter Notebook, Netbeans , etc)
1.5 The basics of the python programming
1.6 Fundamental python programming techniques
1.6.1 The Tabular data, and data formats
1.6.2 Python pandas data science library
1.6.3 Python lambdas, and the numpy library.
1.6.4 Introduce the data cleaning and manipulation techniques
1.6.5 Introduce the abstraction of the Series and DataFrame
1.6.6 Run basic inferential statistical analysis.
1.7 Exercises and answers
Chapter 2: The importance of data visualization in business intelligence
2.1 Shift from input to output data preference
2.2 Why Data visualization is important?
2.3 How is the modern business needs Data visualization?
2.4 The future of Data Visualization
2.5 How data visualization is used for Business decision making
2.6 Introduce data visualization tchniques
2.6.1 Loading libraries
2.6.2 Popular Libraries for Data Visualization in Python
Matplotlib
Seaborn
Geoplotlib
Pandas
Plotly
2.6.3 Introduce Plots in Python
2.7 Exercises and answers
Chapter 3: Data collections structure
3.1 Lists
3.1.1 Create lists
3.1.2 Accessing values in lists
3.1.3 Add and update lists
3.1.4 Delete list elements
3.1.5 Basic list operations
3.1.6 Indexing, slicing, and matrices
3.1.7 Built-in list functions & methods
3.1.8 List methods
3.1.9 List sorting and traversing
3.1.10 Lists and strings
3.2 Parsing lines
3.3 Aliasing
3.4 Dictionaries
3.4.1 Create dictionaries
3.4.2 Updating and accessing values in dictionary
3.4.3 Delete dictionary elements
3.4.4 Built-in dictionary functions & methods
3.5 Tuples
3.5.1 Create tuples
3.5.2 Updating tuples
3.5.3 Accessing values in tuples
3.5.4 Basic tuples operations
3.6 Series data structure
3.7 DataFrame data structure
3.8 Panel data structure
3.9 Exercises and answers
Chapter 4: File I/O processing & Regular expressions
4.1 File I/O processing
4.1.1 Screen in/out processing
4.1.2 Opening and closing files
4.1.3 The file object attributes
4.1.4 Reading and writing files
4.1.5 Directories in python
4.2 Regular expressions
4.2.1 Regular expression patterns
4.2.2 Special character classes
4.2.3 Repetition cases
Alternatives
Anchors
4.3 Exercises and answers
Chapter 5: Data gathering and cleaning
5.1 Data cleaning
Check missing values
Handle the missing values
5.2 Read and clean csv file
5.3 Data integration
5.4 Read the json file
5.5 Reading the html file
5.6 Exercises and answers
Chapter 6: Data exploring and analysis
6.1 Series data structure
6.1.1 Create a series
6.1.2 Accessing data from series with position
6.2 DataFrame data structure
6.2.1 Create a DataFrame
6.2.2 Updating and accessing DataFrame
Column selection
Column addition
Column deletion
Row selection
Row addition
Row deletion
6.3 Panel data structure
6.3.1 Create panel
6.3.2 Accessing data from panel with position
6.4 Data analysis
6.4.1 Statistical analysis
6.4.2 Data grouping
Iterating through groups
Aggregations
Transformations
Filtration
6.5 Exercises and answers
Chapter 7: Data visualization
7.1 Direct plotting
Line plotting
Bar plotting
Pie chart
Box plotting
Histogram plotting
A scatterplot
7.2 Seaborn plotting system
Strip plotting
Boxplot
Swarmplot
Jointplot
7.3 Matplotlib plotting
Line plotting
Bar chart
Histogram plotting
Scatter plot
Stack plots
Pie chart
7.4 Exercises.
Chapter 8: Case Study
8.1 Business case
8.2 Case data gathering
8.3 Case data analysis
8.4 Case data Visualization
Show more