Warehouse Stock Clearance Sale

Grab a bargain today!


Sign Up for Fishpond's Best Deals Delivered to You Every Day
Go
Data Science Handbook
A Practical Approach

Rating
Format
Hardback, 480 pages
Published
United States, 1 September 2022

Acknowledgment xi Preface xiii 1 Data Munging Basics 1 Introduction 1 1.1 Filtering and Selecting Data 6 1.2 Treating Missing Values 11 1.3 Removing Duplicates 14 1.4 Concatenating and Transforming Data 16 1.5 Grouping and Data Aggregation 20 References 20 2 Data Visualization 23 2.1 Creating Standard Plots (Line, Bar, Pie) 26 2.2 Defining Elements of a Plot 30 2.3 Plot Formatting 33 2.4 Creating Labels and Annotations 38 2.5 Creating Visualizations from Time Series Data 42 2.6 Constructing Histograms, Box Plots, and Scatter Plots 44 References 54 3 Basic Math and Statistics 57 3.1 Linear Algebra 57 3.2 Calculus 58 3.2.1 Differential Calculus 58 3.2.2 Integral Calculus 58 3.3 Inferential Statistics 60 3.3.1 Central Limit Theorem 60 3.3.2 Hypothesis Testing 60 3.3.3 ANOVA 60 3.3.4 Qualitative Data Analysis 60 3.4 Using NumPy to Perform Arithmetic Operations on Data 61 3.5 Generating Summary Statistics Using Pandas and Scipy 64 3.6 Summarizing Categorical Data Using Pandas 68 3.7 Starting with Parametric Methods in Pandas and Scipy 84 3.8 Delving Into Non-Parametric Methods Using Pandas and Scipy 87 3.9 Transforming Dataset Distributions 91 References 94 4 Introduction to Machine Learning 97 4.1 Introduction to Machine Learning 97 4.2 Types of Machine Learning Algorithms 101 4.3 Explanatory Factor Analysis 114 4.4 Principal Component Analysis (PCA) 115 References 121 5 Outlier Analysis 123 5.1 Extreme Value Analysis Using Univariate Methods 123 5.2 Multivariate Analysis for Outlier Detection 125 5.3 DBSCan Clustering to Identify Outliers 127 References 133 6 Cluster Analysis 135 6.1 K-Means Algorithm 135 6.2 Hierarchial Methods 141 6.3 Instance-Based Learning w/ k-Nearest Neighbor 149 References 156 7 Network Analysis with NetworkX 157 7.1 Working with Graph Objects 159 7.2 Simulating a Social Network (ie; Directed Network Analysis) 163 7.3 Analyzing a Social Network 169 References 171 8 Basic Algorithmic Learning 173 8.1 Linear Regression 173 8.2 Logistic Regression 183 8.3 Naive Bayes Classifiers 189 References 195 9 Web-Based Data Visualizations with Plotly 197 9.1 Collaborative Aanalytics 197 9.2 Basic Charts 208 9.3 Statistical Charts 212 9.4 Plotly Maps 216 References 219 10 Web Scraping with Beautiful Soup 221 10.1 The BeautifulSoup Object 224 10.2 Exploring NavigableString Objects 228 10.3 Data Parsing 230 10.4 Web Scraping 233 10.5 Ensemble Models with Random Forests 235 References 254 Data Science Projects 257 11 Covid19 Detection and Prediction 259 Bibliography 275 12 Leaf Disease Detection 277 Bibliography 283 13 Brain Tumor Detection with Data Science 285 Bibliography 295 14 Color Detection with Python 297 Bibliography 300 15 Detecting Parkinson's Disease 301 Bibliography 302 16 Sentiment Analysis 303 Bibliography 306 17 Road Lane Line Detection 307 Bibliography 315 18 Fake News Detection 317 Bibliography 318 19 Speech Emotion Recognition 319 Bibliography 322 20 Gender and Age Detection with Data Science 323 Bibliography 339 21 Diabetic Retinopathy 341 Bibliography 350 22 Driver Drowsiness Detection in Python 351 Bibliography 356 23 Chatbot Using Python 357 Bibliography 363 24 Handwritten Digit Recognition Project 365 Bibliography 368 25 Image Caption Generator Project in Python 369 Bibliography 379 26 Credit Card Fraud Detection Project 381 Bibliography 391 27 Movie Recommendation System 393 Bibliography 411 28 Customer Segmentation 413 Bibliography 431 29 Breast Cancer Classification 433 Bibliography 443 30 Traffic Signs Recognition 445 Bibliography 453

Show more

Our Price
HK$1,000
Elsewhere
HK$1,337.31
Save HK$337.31 (25%)
Ships from NZ Estimated delivery date: 7th May - 13th May from NZ
Free Shipping Worldwide

Buy Together
+
Buy together with Cognitive Engineering for Next Generation Computing at a great price!
Buy Together
HK$2,389
Elsewhere Price
HK$2,598.24
You Save HK$209.24 (8%)

Product Description

Acknowledgment xi Preface xiii 1 Data Munging Basics 1 Introduction 1 1.1 Filtering and Selecting Data 6 1.2 Treating Missing Values 11 1.3 Removing Duplicates 14 1.4 Concatenating and Transforming Data 16 1.5 Grouping and Data Aggregation 20 References 20 2 Data Visualization 23 2.1 Creating Standard Plots (Line, Bar, Pie) 26 2.2 Defining Elements of a Plot 30 2.3 Plot Formatting 33 2.4 Creating Labels and Annotations 38 2.5 Creating Visualizations from Time Series Data 42 2.6 Constructing Histograms, Box Plots, and Scatter Plots 44 References 54 3 Basic Math and Statistics 57 3.1 Linear Algebra 57 3.2 Calculus 58 3.2.1 Differential Calculus 58 3.2.2 Integral Calculus 58 3.3 Inferential Statistics 60 3.3.1 Central Limit Theorem 60 3.3.2 Hypothesis Testing 60 3.3.3 ANOVA 60 3.3.4 Qualitative Data Analysis 60 3.4 Using NumPy to Perform Arithmetic Operations on Data 61 3.5 Generating Summary Statistics Using Pandas and Scipy 64 3.6 Summarizing Categorical Data Using Pandas 68 3.7 Starting with Parametric Methods in Pandas and Scipy 84 3.8 Delving Into Non-Parametric Methods Using Pandas and Scipy 87 3.9 Transforming Dataset Distributions 91 References 94 4 Introduction to Machine Learning 97 4.1 Introduction to Machine Learning 97 4.2 Types of Machine Learning Algorithms 101 4.3 Explanatory Factor Analysis 114 4.4 Principal Component Analysis (PCA) 115 References 121 5 Outlier Analysis 123 5.1 Extreme Value Analysis Using Univariate Methods 123 5.2 Multivariate Analysis for Outlier Detection 125 5.3 DBSCan Clustering to Identify Outliers 127 References 133 6 Cluster Analysis 135 6.1 K-Means Algorithm 135 6.2 Hierarchial Methods 141 6.3 Instance-Based Learning w/ k-Nearest Neighbor 149 References 156 7 Network Analysis with NetworkX 157 7.1 Working with Graph Objects 159 7.2 Simulating a Social Network (ie; Directed Network Analysis) 163 7.3 Analyzing a Social Network 169 References 171 8 Basic Algorithmic Learning 173 8.1 Linear Regression 173 8.2 Logistic Regression 183 8.3 Naive Bayes Classifiers 189 References 195 9 Web-Based Data Visualizations with Plotly 197 9.1 Collaborative Aanalytics 197 9.2 Basic Charts 208 9.3 Statistical Charts 212 9.4 Plotly Maps 216 References 219 10 Web Scraping with Beautiful Soup 221 10.1 The BeautifulSoup Object 224 10.2 Exploring NavigableString Objects 228 10.3 Data Parsing 230 10.4 Web Scraping 233 10.5 Ensemble Models with Random Forests 235 References 254 Data Science Projects 257 11 Covid19 Detection and Prediction 259 Bibliography 275 12 Leaf Disease Detection 277 Bibliography 283 13 Brain Tumor Detection with Data Science 285 Bibliography 295 14 Color Detection with Python 297 Bibliography 300 15 Detecting Parkinson's Disease 301 Bibliography 302 16 Sentiment Analysis 303 Bibliography 306 17 Road Lane Line Detection 307 Bibliography 315 18 Fake News Detection 317 Bibliography 318 19 Speech Emotion Recognition 319 Bibliography 322 20 Gender and Age Detection with Data Science 323 Bibliography 339 21 Diabetic Retinopathy 341 Bibliography 350 22 Driver Drowsiness Detection in Python 351 Bibliography 356 23 Chatbot Using Python 357 Bibliography 363 24 Handwritten Digit Recognition Project 365 Bibliography 368 25 Image Caption Generator Project in Python 369 Bibliography 379 26 Credit Card Fraud Detection Project 381 Bibliography 391 27 Movie Recommendation System 393 Bibliography 411 28 Customer Segmentation 413 Bibliography 431 29 Breast Cancer Classification 433 Bibliography 443 30 Traffic Signs Recognition 445 Bibliography 453

Show more
Product Details
EAN
9781119857334
ISBN
1119857333
Publisher
Dimensions
23.1 x 15.5 x 2.8 centimeters (0.67 kg)

Table of Contents

Acknowledgment xi

Preface xiii

1 Data Munging Basics

1 Introduction 1

1.1 Filtering and Selecting Data 6

1.2 Treating Missing Values 11

1.3 Removing Duplicates 14

1.4 Concatenating and Transforming Data 16

1.5 Grouping and Data Aggregation 20

References 20

2 Data Visualization 23

2.1 Creating Standard Plots (Line, Bar, Pie) 26

2.2 Defining Elements of a Plot 30

2.3 Plot Formatting 33

2.4 Creating Labels and Annotations 38

2.5 Creating Visualizations from Time Series Data 42

2.6 Constructing Histograms, Box Plots, and Scatter Plots 44

References 54

3 Basic Math and Statistics 57

3.1 Linear Algebra 57

3.2 Calculus 58

3.2.1 Differential Calculus 58

3.2.2 Integral Calculus 58

3.3 Inferential Statistics 60

3.3.1 Central Limit Theorem 60

3.3.2 Hypothesis Testing 60

3.3.3 ANOVA 60

3.3.4 Qualitative Data Analysis 60

3.4 Using NumPy to Perform Arithmetic Operations on Data 61

3.5 Generating Summary Statistics Using Pandas and Scipy 64

3.6 Summarizing Categorical Data Using Pandas 68

3.7 Starting with Parametric Methods in Pandas and Scipy 84

3.8 Delving Into Non-Parametric Methods Using Pandas and Scipy 87

3.9 Transforming Dataset Distributions 91

References 94

4 Introduction to Machine Learning 97

4.1 Introduction to Machine Learning 97

4.2 Types of Machine Learning Algorithms 101

4.3 Explanatory Factor Analysis 114

4.4 Principal Component Analysis (PCA) 115

References 121

5 Outlier Analysis 123

5.1 Extreme Value Analysis Using Univariate Methods 123

5.2 Multivariate Analysis for Outlier Detection 125

5.3 DBSCan Clustering to Identify Outliers 127

References 133

6 Cluster Analysis 135

6.1 K-Means Algorithm 135

6.2 Hierarchial Methods 141

6.3 Instance-Based Learning w/ k-Nearest Neighbor 149

References 156

7 Network Analysis with NetworkX 157

7.1 Working with Graph Objects 159

7.2 Simulating a Social Network (ie; Directed Network Analysis) 163

7.3 Analyzing a Social Network 169

References 171

8 Basic Algorithmic Learning 173

8.1 Linear Regression 173

8.2 Logistic Regression 183

8.3 Naive Bayes Classifiers 189

References 195

9 Web-Based Data Visualizations with Plotly 197

9.1 Collaborative Aanalytics 197

9.2 Basic Charts 208

9.3 Statistical Charts 212

9.4 Plotly Maps 216

References 219

10 Web Scraping with Beautiful Soup 221

10.1 The BeautifulSoup Object 224

10.2 Exploring NavigableString Objects 228

10.3 Data Parsing 230

10.4 Web Scraping 233

10.5 Ensemble Models with Random Forests 235

References 254

Data Science Projects 257

11 Covid19 Detection and Prediction 259

Bibliography 275

12 Leaf Disease Detection 277

Bibliography 283

13 Brain Tumor Detection with Data Science 285

Bibliography 295

14 Color Detection with Python 297

Bibliography 300

15 Detecting Parkinson’s Disease 301

Bibliography 302

16 Sentiment Analysis 303

Bibliography 306

17 Road Lane Line Detection 307

Bibliography 315

18 Fake News Detection 317

Bibliography 318

19 Speech Emotion Recognition 319

Bibliography 322

20 Gender and Age Detection with Data Science 323

Bibliography 339

21 Diabetic Retinopathy 341

Bibliography 350

22 Driver Drowsiness Detection in Python 351

Bibliography 356

23 Chatbot Using Python 357

Bibliography 363

24 Handwritten Digit Recognition Project 365

Bibliography 368

25 Image Caption Generator Project in Python 369

Bibliography 379

26 Credit Card Fraud Detection Project 381

Bibliography 391

27 Movie Recommendation System 393

Bibliography 411

28 Customer Segmentation 413

Bibliography 431

29 Breast Cancer Classification 433

Bibliography 443

30 Traffic Signs Recognition 445

Bibliography 453

About the Author

Kolla Bhanu Prakash, PhD, is a Professor and Research Group Head for A.I. & Data Science Research group at K L University, India. He has published more than 80 research papers in international and national journals and conferences, as well as authored/edited 12 books and seven patents. His research interests include deep learning, data science, and quantum computing.

Show more
Review this Product
Ask a Question About this Product More...
 
Look for similar items by category

Back to top