Preface; Part I. Manifolds, Tensors and Exterior Forms: 1. Manifolds and vector fields; 2. Tensors and exterior forms; 3. Integration of differential forms; 4. The Lie derivative; 5. The Poincaré Lemma and potentials; 6. Holonomic and non-holonomic constraints; Part II. Geometry and Topology: 7. R3 and Minkowski space; 8. The geometry of surfaces in R3; 9. Covariant differentiation and curvature; 10. Geodesics; 11. Relativity, tensors, and curvature; 12. Curvature and topology: Synge's theorem; 13. Betti numbers and De Rham's theorem; 14. Harmonic forms; Part III. Lie Groups, Bundles and Chern Forms: 15. Lie groups; 16. Vector bundles in geometry and physics; 17. Fiber bundles, Gauss–Bonnet, and topological quantization; 18. Connections and associated bundles; 19. The Dirac equation; 20. Yang–Mills fields; 21. Betti numbers and covering spaces; 22. Chern forms and homotopy groups; Appendix: forms in continuum mechanics.
Introduces the mathematics needed for a deeper understanding of both classical and modern physics.
' … extremely helpful for students in physics and engineering …
recommended to a wide audience …' European Mathematical Society
'The layout, the typography and the illustrations of this advanced
textbook on modern mathematical methods are all very impressive and
so are the topics covered in the text.' Zentralblatt für Mathematik
und ihre Grenzgebiete
Ask a Question About this Product More... |