Seit Erscheinen der 2. Auflage hat sich die Kohlenwasserstoffchemie rasant entwickelt, in wissenschaftlicher Hinsicht und gemessen an seiner Bedeutung. Der Ansatz hat das größte Potenzial, um Erdöl und eines Tages alle fossilen Brennstoffe zu ersetzen. Auch können die heute noch überwiegend eingesetzten fossilen Brennstoffe durch CO2-Abscheidung und -Recycling umweltfreundlicher werden. CO2 lässt sich mit Materialien auch so recyceln, dass neue Brennstoffe und chemische Rohstoffe entstehen. Diese Entwicklungen haben zu dieser 3. Auflage geführt.
GEORGE A. OLAH, PhD, was awarded the undivided 1994 Nobel Prize in Chemistry. He was a Distinguished Professor of Chemistry, Chemical Engineering and Materials Science; Donald P. and Katherine B. Loker Chair in Organic Chemistry; and Founding Director of the Loker Hydrocarbon Research Institute at the University of Southern California, Los Angeles. He passed away on March 8, 2017. ÁRPÁD MOLNÁR, DSc, is an Emeritus Professor at the University of Szeged, Hungary, and a Senior Fellow of the Loker Hydrocarbon Research Institute at the University of Southern California. G. K. SURYA PRAKASH, PhD, is the George A. and Judith A. Olah Nobel Laureate Chair Professor and the Director of the Loker Hydrocarbon Research Institute at the University of Southern California.
Volume 1 Preface to the Third Edition xiii Preface to the Second Edition xv Preface to the First Edition xvii Introduction xix Introduction and General Aspects 1 1.1 Hydrocarbons and Their Classes 1 1.2 Energy-Hydrocarbon Relationships 2 1.3 Hydrocarbon Sources 4 Extraterrestrial Hydrocarbons 15 1.4 Hydrocarbon Production from Natural Sources 16 1.5 Hydrocarbon Synthesis 20 1.6 Nonrenewable and Renewable Hydrocarbons 27 1.7 Regenerative Hydrocarbons from CO2 Emission Capture and Recycling 29 1.8 Hydrocarbon Functionalization Reactions 30 1.9 Use of Hydrocarbons, Petroleum Oil 35 1.9.1 Energy Generation, Storage, and Delivery: Heating 36 1.9.2 Transportation Fuels 36 1.9.3 Chemical Products, Plastics, and Pharmaceuticals 38 References 38 Hydrocarbons from Petroleum and Natural Gas 49 2.1 Cracking 49 2.2 Reforming 62 Hydroforming 64 Metal-Catalyzed Reforming 65 2.3 Dehydrogenation with Olefin Production 71 Heterogeneous Catalysts 73 Homogeneous Catalysts 78 C2-C3 Alkenes 85 C4 Alkenes 86 Buta-1,3-diene and Isoprene 87 Higher Olefins 88 Styrene 88 2.4 Upgrading of Natural-Gas Liquids 89 2.5 Aromatics Production 89 References 102 Synthesis from C Sources 125 3.1 Aspects of C1 Chemistry 126 3.2 Chemical Reduction to Methanol and Oxygenates; Recycling of CO2 127 Heterogeneous Hydrogenation 129 Homogeneous Hydrogenation 137 Ionic Reduction 143 Electrochemical and Electrocatalytic Reduction 143 Photoreduction 146 Enzymatic Reduction 148 3.3 Fischer-Tropsch Chemistry 149 3.4 Oxygenation of Methane 166 Methanol Synthesis 166 3.5 Oligocondensation of Methane 173 3.6 Hydrocarbons from Methane Derivatives 186 Methanol Conversion to Hydrocarbons 186 Methanol to Hydrocarbon Technologies 196 Methanol to Gasoline 196 Methanol to Olefin 197 Methanol to Propylene 198 References 200 Isomerization 237 4.1 Acid-Catalyzed and Bifunctional Isomerization 238 Mechanism 243 Side-Chain Isomerization 250 Positional Isomerization 250 4.2 Base-Catalyzed Isomerization 262 4.2.1 Alkenes 262 4.3 Metal-Catalyzed Isomerization 266 4.4 Pericyclic Rearrangements 277 4.5 Practical Applications 284 Alkanes 284 Alkenes 285 4.5.2 Isomerization of Xylenes 286 References 287 Alkylations 305 5.1 Acid-Catalyzed Alkylation 305 Alkylolysis (Alkylative Cleavage) 317 Alkylation of Alkenes with Organic Halides 318 Alkylation of Alkynes 320 Alkylation with Carbonyl Compounds: The Prins Reaction 320 Catalysts 324 Alkylation with Alkyl Halides 326 Alkylation with Alkenes 331 Alkylation with Alkanes 335 Alkylation with Other Reagents 338 5.2 Base-Catalyzed Alkylation 350 5.3 Alkylation through Organometallics 352 5.4 Miscellaneous Alkylations 356 5.5 Practical Applications 360 References 369 Addition Reactions 389 6.1 Hydration 389 Production of Alcohols by Hydration of Alkenes 395 Production of Octane-Enhancing Oxygenates 396 Acetaldehyde 397 6.2 HX Addition 398 Alkenes 398 Dienes 403 Alkynes 404 Ethyl Chloride 411 Hydrochlorination of Buta-1,3-diene 411 Vinyl Chloride 411 Ethylene Chlorohydrin 412 Propylene Chlorohydrin 412 Adiponitrile 412 Acrylonitrile 413 6.3 Halogen Addition 413 Vinyl Chloride 422 Chlorination of Buta-1,3-diene 424 6.4 Addition to Form C-N Bonds 424 6.5 Addition to Form C-O, C-S, and C-P Bonds 433 6.6 Hydrometalation 439 Alkenes 440 Dienes 446 Alkynes 448 Alkenes 452 Dienes 456 Alkynes 457 6.7 Halometalation 462 6.8 Solvometalation 465 6.9 Carbometalation 466 6.10 Cycloaddition 471 References 477 Carbonylation and Carboxylation 509 7.1 Carbonylation 509 Hydroformylation in Biphasic Solvent Systems 515 The Use of Heterogeneous Catalysts 516 Hydroformylation of Higher Alkenes 518 Hydroformylation of Internal Alkenes 519 Asymmetric Hydroformylation 520 7.2 Carboxylation 533 Saturated Hydrocarbons 534 Aromatic Hydrocarbons 536 Hydrocarboxylation and hydroesterification 539 Aminocarboxylation 545 Neocarboxylic Acids 547 Hydrocarboxymethylation of Long-Chain Alkenes 547 Propionic Acid 547 Acrylic Acid and Acrylates 548 References 548 Acylation 569 8.1 Acylation of Aromatics 569 New Soluble Catalysts 573 Solid Catalysts 575 The Gattermann-Koch Reaction 577 The Gattermann Reaction 579 Other Formylations 580 8.2 Acylation of Aliphatic Compounds 581 References 586 Index 000 Volume 2 Preface to the Third Edition xi Preface to the Second Edition xiii Preface to the First Edition xv Introduction xvii Oxidation-Oxygenation 593 9.1 Oxidation of Alkanes 594 Autoxidation of Alkanes 594 Oxidation of Methane 596 Oxidation with Stoichiometric Oxidants 606 Oxidation Catalyzed by Enzymes and Metalloporphyrins 613 Metal-Catalyzed Oxidation in the Homogeneous Phase 616 Oxidation Induced by Heterogeneous Catalysts 619 Metal Oxidants 623 Electrophilic Reagents 624 Oxygenolysis 628 9.2 Oxidation of Alkenes 630 Direct Oxidation with Stoichiometric Oxidants 630 Metal-Catalyzed Epoxidation 635 Epoxidation Catalyzed by Metalloporphyrins 644 Asymmetric Epoxidation 647 Autoxidation 650 Reactions with Singlet Oxygen 650 Bis-Hydroxylation 656 Bis-Acetoxylation 663 Oxidation with Palladium in the Homogeneous Phase 664 Oxidation with Other Reagents 669 Vinylic Acetoxylation 671 Ozonation 673 Mechanism 673 Synthetic Applications 676 Other Oxidants 678 Allylic Hydroxylation and Acyloxylation 681 Oxidation to alpha,ß-Unsaturated Carbonyl Compounds 686 9.3 Oxidation of Alkynes 690 9.4 Oxidation of Aromatics 693 Oxidation to Phenols 693 Ring Acyloxylation 701 Oxidation to Quinones 702 Oxidation to Arene Oxides and Arene Diols 703 Oxidation with Singlet Oxygen 704 Oxidation of Methyl-Substituted Aromatics 706 Oxidation of Other Arenes 708 Benzylic Acetoxylation 711 9.5 Practical Applications 712 Acetic Acid 712 Maleic Anhydride 713 Oxidation of Cyclohexane 715 Oxidation of Cyclododecane 715 sec-Alcohols 715 Ethylene Oxide 716 Propylene Oxide 718 Acetaldehyde and Acetone 719 Vinyl Acetate 719 1,4-Diacetoxybut-2-ene 720 Acrolein and Acrylic Acid 720 Methacrolein and Methacrylic Acid 721 Acrylonitrile 721 Other Processes 722 Phenol and Acetone 722 Benzoic Acid 723 Terephthalic Acid 723 Maleic Anhydride 724 Phthalic Anhydride 725 Anthraquinone 727 References 727 Heterosubstitution 795 10.1 Electrophilic (Acid-Catalyzed) Substitution 795 Halogenation 796 Nitration 798 Sulfuration 799 Halogenation 800 Nitration 804 Sulfonation 808 Synthesis of Sulfoxides and Sulfones 810 Chlorobenzene 811 Nitration of Benzene and Toluene 811 Sulfonation of Benzene and Alkylbenzenes 811 10.2 Free-Radical Substitution 812 Chlorination 812 Fluorination 817 Bromination 818 Iodination 819 Side-Chain Halogenation of Arylalkanes 819 Chlorination of Alkanes 824 Side-Chain Chlorination of Toluene 826 Unsaturated Chlorides 826 Sulfochlorination of Alkanes 827 Nitroalkanes 827 10.3 Formation of C-N Bonds 827 10.4 Formation of Carbon-Metal Bonds 831 Borylation 837 Silylation 840 Al, Ge, and Sn Derivatives 841 10.5 Miscellaneous Derivatives 842 References 843 Reduction-Hydrogenation 863 11.1 Heterogeneous Catalytic Hydrogenation 864 Mechanism 866 Stereochemistry 870 11.2 Homogeneous Catalytic Hydrogenation 886 Mechanism 891 Selectivity and Stereochemistry 893 Asymmetric Hydrogenation 896 11.3 Transfer Hydrogenation 904 11.4 Chemical and Electrochemical Reduction 906 Mechanism 911 Selectivity 911 11.5 Ionic Hydrogenation 913 11.6 Hydrogenolysis of Saturated Hydrocarbons 918 11.7 Practical Applications 931 C2 Hydrorefining 931 C3 Hydrorefining 931 C4 Hydrorefining 931 Gasoline Hydrorefining 932 References 934 Metathesis 959 12.1 Metathesis of Acyclic Alkenes 960 12.2 Alkane Metathesis 973 12.3 Metathesis of Alkynes 976 12.4 Ring-Closing Metathesis 978 12.5 Ring-Opening Metathesis and Ring-Opening Metathesis Polymerization 979 12.6 Practical Applications 983 References 986 Oligomerization and Polymerization 1001 13.1 Oligomerization 1001 Practical Applications 1006 Alkenes 1008 Alkynes 1013 Cyclooligomerization 1014 Practical Applications 1018 13.2 Polymerization 1021 Ziegler-Natta Catalysts 1038 The Phillips Catalyst 1041 Group IV Metallocene Catalysts 1042 Postmetallocene Catalysts 1047 Stereoregular Polymerization of Propylene 1058 Isospecific Polymerization 1059 Syndiospecific Polymerization 1064 Stereoregular Polymerization of Dienes 1065 Ethylene Polymers 1072 Polypropylene 1074 Polybutylenes 1075 Styrene Polymers 1076 Polydienes 1077 References 1078 Outlook 1111 14.1 Sustainable Hydrocarbon Chemistry for the Future 1111 14.2 Extraterrestrial Hydrocarbon Chemistry 1114 References 1115 Index 000
Show moreSeit Erscheinen der 2. Auflage hat sich die Kohlenwasserstoffchemie rasant entwickelt, in wissenschaftlicher Hinsicht und gemessen an seiner Bedeutung. Der Ansatz hat das größte Potenzial, um Erdöl und eines Tages alle fossilen Brennstoffe zu ersetzen. Auch können die heute noch überwiegend eingesetzten fossilen Brennstoffe durch CO2-Abscheidung und -Recycling umweltfreundlicher werden. CO2 lässt sich mit Materialien auch so recyceln, dass neue Brennstoffe und chemische Rohstoffe entstehen. Diese Entwicklungen haben zu dieser 3. Auflage geführt.
GEORGE A. OLAH, PhD, was awarded the undivided 1994 Nobel Prize in Chemistry. He was a Distinguished Professor of Chemistry, Chemical Engineering and Materials Science; Donald P. and Katherine B. Loker Chair in Organic Chemistry; and Founding Director of the Loker Hydrocarbon Research Institute at the University of Southern California, Los Angeles. He passed away on March 8, 2017. ÁRPÁD MOLNÁR, DSc, is an Emeritus Professor at the University of Szeged, Hungary, and a Senior Fellow of the Loker Hydrocarbon Research Institute at the University of Southern California. G. K. SURYA PRAKASH, PhD, is the George A. and Judith A. Olah Nobel Laureate Chair Professor and the Director of the Loker Hydrocarbon Research Institute at the University of Southern California.
Volume 1 Preface to the Third Edition xiii Preface to the Second Edition xv Preface to the First Edition xvii Introduction xix Introduction and General Aspects 1 1.1 Hydrocarbons and Their Classes 1 1.2 Energy-Hydrocarbon Relationships 2 1.3 Hydrocarbon Sources 4 Extraterrestrial Hydrocarbons 15 1.4 Hydrocarbon Production from Natural Sources 16 1.5 Hydrocarbon Synthesis 20 1.6 Nonrenewable and Renewable Hydrocarbons 27 1.7 Regenerative Hydrocarbons from CO2 Emission Capture and Recycling 29 1.8 Hydrocarbon Functionalization Reactions 30 1.9 Use of Hydrocarbons, Petroleum Oil 35 1.9.1 Energy Generation, Storage, and Delivery: Heating 36 1.9.2 Transportation Fuels 36 1.9.3 Chemical Products, Plastics, and Pharmaceuticals 38 References 38 Hydrocarbons from Petroleum and Natural Gas 49 2.1 Cracking 49 2.2 Reforming 62 Hydroforming 64 Metal-Catalyzed Reforming 65 2.3 Dehydrogenation with Olefin Production 71 Heterogeneous Catalysts 73 Homogeneous Catalysts 78 C2-C3 Alkenes 85 C4 Alkenes 86 Buta-1,3-diene and Isoprene 87 Higher Olefins 88 Styrene 88 2.4 Upgrading of Natural-Gas Liquids 89 2.5 Aromatics Production 89 References 102 Synthesis from C Sources 125 3.1 Aspects of C1 Chemistry 126 3.2 Chemical Reduction to Methanol and Oxygenates; Recycling of CO2 127 Heterogeneous Hydrogenation 129 Homogeneous Hydrogenation 137 Ionic Reduction 143 Electrochemical and Electrocatalytic Reduction 143 Photoreduction 146 Enzymatic Reduction 148 3.3 Fischer-Tropsch Chemistry 149 3.4 Oxygenation of Methane 166 Methanol Synthesis 166 3.5 Oligocondensation of Methane 173 3.6 Hydrocarbons from Methane Derivatives 186 Methanol Conversion to Hydrocarbons 186 Methanol to Hydrocarbon Technologies 196 Methanol to Gasoline 196 Methanol to Olefin 197 Methanol to Propylene 198 References 200 Isomerization 237 4.1 Acid-Catalyzed and Bifunctional Isomerization 238 Mechanism 243 Side-Chain Isomerization 250 Positional Isomerization 250 4.2 Base-Catalyzed Isomerization 262 4.2.1 Alkenes 262 4.3 Metal-Catalyzed Isomerization 266 4.4 Pericyclic Rearrangements 277 4.5 Practical Applications 284 Alkanes 284 Alkenes 285 4.5.2 Isomerization of Xylenes 286 References 287 Alkylations 305 5.1 Acid-Catalyzed Alkylation 305 Alkylolysis (Alkylative Cleavage) 317 Alkylation of Alkenes with Organic Halides 318 Alkylation of Alkynes 320 Alkylation with Carbonyl Compounds: The Prins Reaction 320 Catalysts 324 Alkylation with Alkyl Halides 326 Alkylation with Alkenes 331 Alkylation with Alkanes 335 Alkylation with Other Reagents 338 5.2 Base-Catalyzed Alkylation 350 5.3 Alkylation through Organometallics 352 5.4 Miscellaneous Alkylations 356 5.5 Practical Applications 360 References 369 Addition Reactions 389 6.1 Hydration 389 Production of Alcohols by Hydration of Alkenes 395 Production of Octane-Enhancing Oxygenates 396 Acetaldehyde 397 6.2 HX Addition 398 Alkenes 398 Dienes 403 Alkynes 404 Ethyl Chloride 411 Hydrochlorination of Buta-1,3-diene 411 Vinyl Chloride 411 Ethylene Chlorohydrin 412 Propylene Chlorohydrin 412 Adiponitrile 412 Acrylonitrile 413 6.3 Halogen Addition 413 Vinyl Chloride 422 Chlorination of Buta-1,3-diene 424 6.4 Addition to Form C-N Bonds 424 6.5 Addition to Form C-O, C-S, and C-P Bonds 433 6.6 Hydrometalation 439 Alkenes 440 Dienes 446 Alkynes 448 Alkenes 452 Dienes 456 Alkynes 457 6.7 Halometalation 462 6.8 Solvometalation 465 6.9 Carbometalation 466 6.10 Cycloaddition 471 References 477 Carbonylation and Carboxylation 509 7.1 Carbonylation 509 Hydroformylation in Biphasic Solvent Systems 515 The Use of Heterogeneous Catalysts 516 Hydroformylation of Higher Alkenes 518 Hydroformylation of Internal Alkenes 519 Asymmetric Hydroformylation 520 7.2 Carboxylation 533 Saturated Hydrocarbons 534 Aromatic Hydrocarbons 536 Hydrocarboxylation and hydroesterification 539 Aminocarboxylation 545 Neocarboxylic Acids 547 Hydrocarboxymethylation of Long-Chain Alkenes 547 Propionic Acid 547 Acrylic Acid and Acrylates 548 References 548 Acylation 569 8.1 Acylation of Aromatics 569 New Soluble Catalysts 573 Solid Catalysts 575 The Gattermann-Koch Reaction 577 The Gattermann Reaction 579 Other Formylations 580 8.2 Acylation of Aliphatic Compounds 581 References 586 Index 000 Volume 2 Preface to the Third Edition xi Preface to the Second Edition xiii Preface to the First Edition xv Introduction xvii Oxidation-Oxygenation 593 9.1 Oxidation of Alkanes 594 Autoxidation of Alkanes 594 Oxidation of Methane 596 Oxidation with Stoichiometric Oxidants 606 Oxidation Catalyzed by Enzymes and Metalloporphyrins 613 Metal-Catalyzed Oxidation in the Homogeneous Phase 616 Oxidation Induced by Heterogeneous Catalysts 619 Metal Oxidants 623 Electrophilic Reagents 624 Oxygenolysis 628 9.2 Oxidation of Alkenes 630 Direct Oxidation with Stoichiometric Oxidants 630 Metal-Catalyzed Epoxidation 635 Epoxidation Catalyzed by Metalloporphyrins 644 Asymmetric Epoxidation 647 Autoxidation 650 Reactions with Singlet Oxygen 650 Bis-Hydroxylation 656 Bis-Acetoxylation 663 Oxidation with Palladium in the Homogeneous Phase 664 Oxidation with Other Reagents 669 Vinylic Acetoxylation 671 Ozonation 673 Mechanism 673 Synthetic Applications 676 Other Oxidants 678 Allylic Hydroxylation and Acyloxylation 681 Oxidation to alpha,ß-Unsaturated Carbonyl Compounds 686 9.3 Oxidation of Alkynes 690 9.4 Oxidation of Aromatics 693 Oxidation to Phenols 693 Ring Acyloxylation 701 Oxidation to Quinones 702 Oxidation to Arene Oxides and Arene Diols 703 Oxidation with Singlet Oxygen 704 Oxidation of Methyl-Substituted Aromatics 706 Oxidation of Other Arenes 708 Benzylic Acetoxylation 711 9.5 Practical Applications 712 Acetic Acid 712 Maleic Anhydride 713 Oxidation of Cyclohexane 715 Oxidation of Cyclododecane 715 sec-Alcohols 715 Ethylene Oxide 716 Propylene Oxide 718 Acetaldehyde and Acetone 719 Vinyl Acetate 719 1,4-Diacetoxybut-2-ene 720 Acrolein and Acrylic Acid 720 Methacrolein and Methacrylic Acid 721 Acrylonitrile 721 Other Processes 722 Phenol and Acetone 722 Benzoic Acid 723 Terephthalic Acid 723 Maleic Anhydride 724 Phthalic Anhydride 725 Anthraquinone 727 References 727 Heterosubstitution 795 10.1 Electrophilic (Acid-Catalyzed) Substitution 795 Halogenation 796 Nitration 798 Sulfuration 799 Halogenation 800 Nitration 804 Sulfonation 808 Synthesis of Sulfoxides and Sulfones 810 Chlorobenzene 811 Nitration of Benzene and Toluene 811 Sulfonation of Benzene and Alkylbenzenes 811 10.2 Free-Radical Substitution 812 Chlorination 812 Fluorination 817 Bromination 818 Iodination 819 Side-Chain Halogenation of Arylalkanes 819 Chlorination of Alkanes 824 Side-Chain Chlorination of Toluene 826 Unsaturated Chlorides 826 Sulfochlorination of Alkanes 827 Nitroalkanes 827 10.3 Formation of C-N Bonds 827 10.4 Formation of Carbon-Metal Bonds 831 Borylation 837 Silylation 840 Al, Ge, and Sn Derivatives 841 10.5 Miscellaneous Derivatives 842 References 843 Reduction-Hydrogenation 863 11.1 Heterogeneous Catalytic Hydrogenation 864 Mechanism 866 Stereochemistry 870 11.2 Homogeneous Catalytic Hydrogenation 886 Mechanism 891 Selectivity and Stereochemistry 893 Asymmetric Hydrogenation 896 11.3 Transfer Hydrogenation 904 11.4 Chemical and Electrochemical Reduction 906 Mechanism 911 Selectivity 911 11.5 Ionic Hydrogenation 913 11.6 Hydrogenolysis of Saturated Hydrocarbons 918 11.7 Practical Applications 931 C2 Hydrorefining 931 C3 Hydrorefining 931 C4 Hydrorefining 931 Gasoline Hydrorefining 932 References 934 Metathesis 959 12.1 Metathesis of Acyclic Alkenes 960 12.2 Alkane Metathesis 973 12.3 Metathesis of Alkynes 976 12.4 Ring-Closing Metathesis 978 12.5 Ring-Opening Metathesis and Ring-Opening Metathesis Polymerization 979 12.6 Practical Applications 983 References 986 Oligomerization and Polymerization 1001 13.1 Oligomerization 1001 Practical Applications 1006 Alkenes 1008 Alkynes 1013 Cyclooligomerization 1014 Practical Applications 1018 13.2 Polymerization 1021 Ziegler-Natta Catalysts 1038 The Phillips Catalyst 1041 Group IV Metallocene Catalysts 1042 Postmetallocene Catalysts 1047 Stereoregular Polymerization of Propylene 1058 Isospecific Polymerization 1059 Syndiospecific Polymerization 1064 Stereoregular Polymerization of Dienes 1065 Ethylene Polymers 1072 Polypropylene 1074 Polybutylenes 1075 Styrene Polymers 1076 Polydienes 1077 References 1078 Outlook 1111 14.1 Sustainable Hydrocarbon Chemistry for the Future 1111 14.2 Extraterrestrial Hydrocarbon Chemistry 1114 References 1115 Index 000
Show moreVolume 1
Preface to the Third Edition xiii
Preface to the Second Edition xv
Preface to the First Edition xvii
Introduction xix
Introduction and General Aspects 1
1.1 Hydrocarbons and Their Classes 1
1.2 Energy–Hydrocarbon Relationships 2
1.3 Hydrocarbon Sources 4
Extraterrestrial Hydrocarbons 15
1.4 Hydrocarbon Production from Natural Sources 16
1.5 Hydrocarbon Synthesis 20
1.6 Nonrenewable and Renewable Hydrocarbons 27
1.7 Regenerative Hydrocarbons from CO2 Emission Capture and Recycling 29
1.8 Hydrocarbon Functionalization Reactions 30
1.9 Use of Hydrocarbons, Petroleum Oil 35
1.9.1 Energy Generation, Storage, and Delivery: Heating 36
1.9.2 Transportation Fuels 36
1.9.3 Chemical Products, Plastics, and Pharmaceuticals 38
References 38
Hydrocarbons from Petroleum and Natural Gas 49
2.1 Cracking 49
2.2 Reforming 62
Hydroforming 64
Metal-Catalyzed Reforming 65
2.3 Dehydrogenation with Olefin Production 71
Heterogeneous Catalysts 73
Homogeneous Catalysts 78
C2–C3 Alkenes 85
C4 Alkenes 86
Buta-1,3-diene and Isoprene 87
Higher Olefins 88
Styrene 88
2.4 Upgrading of Natural-Gas Liquids 89
2.5 Aromatics Production 89
References 102
Synthesis from C Sources 125
3.1 Aspects of C1 Chemistry 126
3.2 Chemical Reduction to Methanol and Oxygenates; Recycling of CO2 127
Heterogeneous Hydrogenation 129
Homogeneous Hydrogenation 137
Ionic Reduction 143
Electrochemical and Electrocatalytic Reduction 143
Photoreduction 146
Enzymatic Reduction 148
3.3 Fischer–Tropsch Chemistry 149
3.4 Oxygenation of Methane 166
Methanol Synthesis 166
3.5 Oligocondensation of Methane 173
3.6 Hydrocarbons from Methane Derivatives 186
Methanol Conversion to Hydrocarbons 186
Methanol to Hydrocarbon Technologies 196
Methanol to Gasoline 196
Methanol to Olefin 197
Methanol to Propylene 198
References 200
Isomerization 237
4.1 Acid-Catalyzed and Bifunctional Isomerization 238
Mechanism 243
Side-Chain Isomerization 250
Positional Isomerization 250
4.2 Base-Catalyzed Isomerization 262
4.2.1 Alkenes 262
4.3 Metal-Catalyzed Isomerization 266
4.4 Pericyclic Rearrangements 277
4.5 Practical Applications 284
Alkanes 284
Alkenes 285
4.5.2 Isomerization of Xylenes 286
References 287
Alkylations 305
5.1 Acid-Catalyzed Alkylation 305
Alkylolysis (Alkylative Cleavage) 317
Alkylation of Alkenes with Organic Halides 318
Alkylation of Alkynes 320
Alkylation with Carbonyl Compounds: The Prins Reaction 320
Catalysts 324
Alkylation with Alkyl Halides 326
Alkylation with Alkenes 331
Alkylation with Alkanes 335
Alkylation with Other Reagents 338
5.2 Base-Catalyzed Alkylation 350
5.3 Alkylation through Organometallics 352
5.4 Miscellaneous Alkylations 356
5.5 Practical Applications 360
References 369
Addition Reactions 389
6.1 Hydration 389
Production of Alcohols by Hydration of Alkenes 395
Production of Octane-Enhancing Oxygenates 396
Acetaldehyde 397
6.2 HX Addition 398
Alkenes 398
Dienes 403
Alkynes 404
Ethyl Chloride 411
Hydrochlorination of Buta-1,3-diene 411
Vinyl Chloride 411
Ethylene Chlorohydrin 412
Propylene Chlorohydrin 412
Adiponitrile 412
Acrylonitrile 413
6.3 Halogen Addition 413
Vinyl Chloride 422
Chlorination of Buta-1,3-diene 424
6.4 Addition to Form C–N Bonds 424
6.5 Addition to Form C–O, C–S, and C–P Bonds 433
6.6 Hydrometalation 439
Alkenes 440
Dienes 446
Alkynes 448
Alkenes 452
Dienes 456
Alkynes 457
6.7 Halometalation 462
6.8 Solvometalation 465
6.9 Carbometalation 466
6.10 Cycloaddition 471
References 477
Carbonylation and Carboxylation 509
7.1 Carbonylation 509
Hydroformylation in Biphasic Solvent Systems 515
The Use of Heterogeneous Catalysts 516
Hydroformylation of Higher Alkenes 518
Hydroformylation of Internal Alkenes 519
Asymmetric Hydroformylation 520
7.2 Carboxylation 533
Saturated Hydrocarbons 534
Aromatic Hydrocarbons 536
Hydrocarboxylation and hydroesterification 539
Aminocarboxylation 545
Neocarboxylic Acids 547
Hydrocarboxymethylation of Long-Chain Alkenes 547
Propionic Acid 547
Acrylic Acid and Acrylates 548
References 548
Acylation 569
8.1 Acylation of Aromatics 569
New Soluble Catalysts 573
Solid Catalysts 575
The Gattermann–Koch Reaction 577
The Gattermann Reaction 579
Other Formylations 580
8.2 Acylation of Aliphatic Compounds 581
References 586
Index 000
Volume 2
Preface to the Third Edition xi
Preface to the Second Edition xiii
Preface to the First Edition xv
Introduction xvii
Oxidation–Oxygenation 593
9.1 Oxidation of Alkanes 594
Autoxidation of Alkanes 594
Oxidation of Methane 596
Oxidation with Stoichiometric Oxidants 606
Oxidation Catalyzed by Enzymes and Metalloporphyrins 613
Metal-Catalyzed Oxidation in the Homogeneous Phase 616
Oxidation Induced by Heterogeneous Catalysts 619
Metal Oxidants 623
Electrophilic Reagents 624
Oxygenolysis 628
9.2 Oxidation of Alkenes 630
Direct Oxidation with Stoichiometric Oxidants 630
Metal-Catalyzed Epoxidation 635
Epoxidation Catalyzed by Metalloporphyrins 644
Asymmetric Epoxidation 647
Autoxidation 650
Reactions with Singlet Oxygen 650
Bis-Hydroxylation 656
Bis-Acetoxylation 663
Oxidation with Palladium in the Homogeneous Phase 664
Oxidation with Other Reagents 669
Vinylic Acetoxylation 671
Ozonation 673
Mechanism 673
Synthetic Applications 676
Other Oxidants 678
Allylic Hydroxylation and Acyloxylation 681
Oxidation to α,β-Unsaturated Carbonyl Compounds 686
9.3 Oxidation of Alkynes 690
9.4 Oxidation of Aromatics 693
Oxidation to Phenols 693
Ring Acyloxylation 701
Oxidation to Quinones 702
Oxidation to Arene Oxides and Arene Diols 703
Oxidation with Singlet Oxygen 704
Oxidation of Methyl-Substituted Aromatics 706
Oxidation of Other Arenes 708
Benzylic Acetoxylation 711
9.5 Practical Applications 712
Acetic Acid 712
Maleic Anhydride 713
Oxidation of Cyclohexane 715
Oxidation of Cyclododecane 715
sec-Alcohols 715
Ethylene Oxide 716
Propylene Oxide 718
Acetaldehyde and Acetone 719
Vinyl Acetate 719
1,4-Diacetoxybut-2-ene 720
Acrolein and Acrylic Acid 720
Methacrolein and Methacrylic Acid 721
Acrylonitrile 721
Other Processes 722
Phenol and Acetone 722
Benzoic Acid 723
Terephthalic Acid 723
Maleic Anhydride 724
Phthalic Anhydride 725
Anthraquinone 727
References 727
Heterosubstitution 795
10.1 Electrophilic (Acid-Catalyzed) Substitution 795
Halogenation 796
Nitration 798
Sulfuration 799
Halogenation 800
Nitration 804
Sulfonation 808
Synthesis of Sulfoxides and Sulfones 810
Chlorobenzene 811
Nitration of Benzene and Toluene 811
Sulfonation of Benzene and Alkylbenzenes 811
10.2 Free-Radical Substitution 812
Chlorination 812
Fluorination 817
Bromination 818
Iodination 819
Side-Chain Halogenation of Arylalkanes 819
Chlorination of Alkanes 824
Side-Chain Chlorination of Toluene 826
Unsaturated Chlorides 826
Sulfochlorination of Alkanes 827
Nitroalkanes 827
10.3 Formation of C–N Bonds 827
10.4 Formation of Carbon–Metal Bonds 831
Borylation 837
Silylation 840
Al, Ge, and Sn Derivatives 841
10.5 Miscellaneous Derivatives 842
References 843
Reduction–Hydrogenation 863
11.1 Heterogeneous Catalytic Hydrogenation 864
Mechanism 866
Stereochemistry 870
11.2 Homogeneous Catalytic Hydrogenation 886
Mechanism 891
Selectivity and Stereochemistry 893
Asymmetric Hydrogenation 896
11.3 Transfer Hydrogenation 904
11.4 Chemical and Electrochemical Reduction 906
Mechanism 911
Selectivity 911
11.5 Ionic Hydrogenation 913
11.6 Hydrogenolysis of Saturated Hydrocarbons 918
11.7 Practical Applications 931
C2 Hydrorefining 931
C3 Hydrorefining 931
C4 Hydrorefining 931
Gasoline Hydrorefining 932
References 934
Metathesis 959
12.1 Metathesis of Acyclic Alkenes 960
12.2 Alkane Metathesis 973
12.3 Metathesis of Alkynes 976
12.4 Ring-Closing Metathesis 978
12.5 Ring-Opening Metathesis and Ring-Opening Metathesis Polymerization 979
12.6 Practical Applications 983
References 986
Oligomerization and Polymerization 1001
13.1 Oligomerization 1001
Practical Applications 1006
Alkenes 1008
Alkynes 1013
Cyclooligomerization 1014
Practical Applications 1018
13.2 Polymerization 1021
Ziegler–Natta Catalysts 1038
The Phillips Catalyst 1041
Group IV Metallocene Catalysts 1042
Postmetallocene Catalysts 1047
Stereoregular Polymerization of Propylene 1058
Isospecific Polymerization 1059
Syndiospecific Polymerization 1064
Stereoregular Polymerization of Dienes 1065
Ethylene Polymers 1072
Polypropylene 1074
Polybutylenes 1075
Styrene Polymers 1076
Polydienes 1077
References 1078
Outlook 1111
14.1 Sustainable Hydrocarbon Chemistry for the Future 1111
14.2 Extraterrestrial Hydrocarbon Chemistry 1114
References 1115
Index 000
GEORGE A. OLAH, PhD, was awarded the undivided 1994 Nobel Prize in Chemistry. He was a Distinguished Professor of Chemistry, Chemical Engineering and Materials Science; Donald P. and Katherine B. Loker Chair in Organic Chemistry; and Founding Director of the Loker Hydrocarbon Research Institute at the University of Southern California, Los Angeles. He passed away on March 8, 2017.
ÁRPÁD MOLNÁR, DSc, is an Emeritus Professor at the University of Szeged, Hungary, and a Senior Fellow of the Loker Hydrocarbon Research Institute at the University of Southern California.
G. K. SURYA PRAKASH, PhD, is the George A. and Judith A. Olah Nobel Laureate Chair Professor and the Director of the Loker Hydrocarbon Research Institute at the University of Southern California.
Ask a Question About this Product More... |