Warehouse Stock Clearance Sale

Grab a bargain today!


Sign Up for Fishpond's Best Deals Delivered to You Every Day
Go
Numerical Methods Using ­Java
For Data Science, Analysis, and Engineering

Rating
Format
Paperback, 1186 pages
Published
United States, 1 January 2022

Implement numerical algorithms in Java using NM Dev, an object-oriented and high-performance programming library for mathematics.Yoüll see how it can help you easily create a solution for your complex engineering problem by quickly putting together classes. Numerical Methods Using Java covers a wide range of topics, including chapters on linear algebra, root finding, curve fitting, differentiation and integration, solving differential equations, random numbers and simulation, a whole suite of unconstrained and constrained optimization algorithms, statistics, regression and time series analysis. The mathematical concepts behind the algorithms are clearly explained, with plenty of code examples and illustrations to help even beginners get started. What You Will Learn


Program in Java using a high-performance numerical library
Learn the mathematics for a wide range of numerical computing algorithms
Convert ideas and equations into code
Put together algorithms and classes to build your own engineering solution
Build solvers for industrial optimization problems
Do data analysis using basic and advanced statistics
Who This Book Is For
Programmers, data scientists, and analysts with prior experience with programming in any language, especially Java.


Table of Contents

About the Authors...........................................................................................................i

Preface............................................................................................................................ii

1. Why Java?..............................................................................................................6

1.1. Java in 2020.....................................................................................................6

1.2. Java vs. C++....................................................................................................6

1.3. Java vs. Python................................................................................................6

1.4. Java in the future .............................................................................................6

2. Data Structures.......................................................................................................7

2.1. Function...........................................................................................................7
2.2. Polynomial ......................................................................................................7

3. Linear Algebra .......................................................................................................8

3.1. Vector and Matrix ...........................................................................................8

3.1.1. Vector Properties .....................................................................................8

3.1.2. Element-wise Operations.........................................................................8

3.1.3. Norm ........................................................................................................9

3.1.4. Inner product and angle ...........................................................................9

3.2. Matrix............................................................................................................10

3.3. Determinant, Transpose and Inverse.............................................................10
3.4. Diagonal Matrices and Diagonal of a Matrix................................................10

3.5. Eigenvalues and Eigenvectors.......................................................................10

3.5.1. Householder Tridiagonalization and QR Factorization Methods..........10

3.5.2. Transformation to Hessenberg Form (Nonsymmetric Matrices)...........10

4. Finding Roots of Single Variable Equations .......................................................11
4.1. Bracketing Methods ......................................................................................11

4.1.1. Bisection Method ...................................................................................11

4.2. Open Methods...............................................................................................11

4.2.1. Fixed-Point Method ...............................................................................11

4.2.2. Newton's Method (Newton-Raphson Method) .....................................11

4.2.3. Secant Method .......................................................................................11

4.2.4. Brent's Method ......................................................................................11

5. Finding Roots of Systems of Equations...............................................................12

5.1. Linear Systems of Equations.........................................................................12

5.2. Gauss Elimination Method............................................................................12

5.3. LU Factorization Methods ............................................................................12

5.3.1. Cholesky Factorization ..........................................................................12

5.4. Iterative Solution of Linear Systems.............................................................12

5.5. System of Nonlinear Equations.....................................................................12
6. Curve Fitting and Interpolation............................................................................14

6.1. Least-Squares Regression .............................................................................14

6.2. Linear Regression..........................................................................................14

6.3. Polynomial Regression..................................................................................14

6.4. Polynomial Interpolation...............................................................................14

6.5. Spline Interpolation .......................................................................................14

7. Numerical Differentiation and Integration...........................................................15

7.1. Numerical Differentiation .............................................................................15

7.2. Finite-Difference Formulas...........................................................................15

7.3. Newton-Cotes Formulas................................................................................15

7.3.1. Rectangular Rule....................................................................................15

7.3.2. Trapezoidal Rule....................................................................................15

7.3.3. Simpson's Rules.....................................................................................15

7.3.4. Higher-Order Newton-Coles Formulas..................................................15

7.4. Romberg Integration .....................................................................................15

7.4.1. Gaussian Quadrature..............................................................................15

7.4.2. Improper Integrals..................................................................................15

8. Numerical Solution of Initial-Value Problems....................................................16

8.1. One-Step Methods.........................................................................................16

8.2. Euler's Method..............................................................................................16

8.3. Runge-Kutta Methods...................................................................................16

8.4. Systems of Ordinary Differential Equations.................................................16

9. Numerical Solution of Partial Differential Equations..........................................17

9.1. Elliptic Partial Differential Equations...........................................................17

9.1.1. Dirichlet Problem...................................................................................17

9.2. Parabolic Partial Differential Equations........................................................17

9.2.1. Finite-Difference Method ......................................................................17

9.2.2. Crank-Nicolson Method.........................................................................17

9.3. Hyperbolic Partial Differential Equations.....................................................17

10..................................................................................................................................18

11..................................................................................................................................19

12. Random Numbers and Simulation ....................................................................20

12.1. Uniform Distribution .................................................................................20

12.2. Normal Distribution...................................................................................20

12.3. Exponential Distribution............................................................................20

12.4. Poisson Distribution ..................................................................................20

12.5. Beta Distribution........................................................................................20
12.6. Gamma Distribution ..................................................................................20

12.7. Multi-dimension Distribution ....................................................................20

13. Unconstrainted Optimization ............................................................................21

13.1. Single Variable Optimization ....................................................................21

13.2. Multi Variable Optimization .....................................................................21

14. Constrained Optimization .................................................................................22

14.1. Linear Programming..................................................................................22

14.2. Quadratic Programming ............................................................................22

14.3. Second Order Conic Programming............................................................22

14.4. Sequential Quadratic Programming...........................................................22

14.5. Integer Programming.................................................................................22

15. Heuristic Optimization......................................................................................23

15.1. Genetic Algorithm .....................................................................................23

15.2. Simulated Annealing .................................................................................23

16. Basic Statistics..................................................................................................24

16.1. Mean, Variance and Covariance................................................................24

16.2. Moment......................................................................................................24

16.3. Rank...........................................................................................................24

17. Linear Regression .............................................................................................25

17.1. Least-Squares Regression..........................................................................25

17.2. General Linear Least Squares....................................................................25

18. Time Series Analysis ........................................................................................26

18.1. Univariate Time Series..............................................................................26
18.2. Multivariate Time Series ...........................................................................26

18.3. ARMA .......................................................................................................26

18.4. GARCH .....................................................................................................26

18.5. Cointegration .............................................................................................26

19. Bibliography .....................................................................................................27

20. Index .....................................................................................................

Show more

Our Price
HK$597
Ships from UK Estimated delivery date: 12th May - 19th May from UK
Free Shipping Worldwide

Buy Together
+
Buy together with Numerical Methods Using Kotlin at a great price!
Buy Together
HK$1,197

Product Description

Implement numerical algorithms in Java using NM Dev, an object-oriented and high-performance programming library for mathematics.Yoüll see how it can help you easily create a solution for your complex engineering problem by quickly putting together classes. Numerical Methods Using Java covers a wide range of topics, including chapters on linear algebra, root finding, curve fitting, differentiation and integration, solving differential equations, random numbers and simulation, a whole suite of unconstrained and constrained optimization algorithms, statistics, regression and time series analysis. The mathematical concepts behind the algorithms are clearly explained, with plenty of code examples and illustrations to help even beginners get started. What You Will Learn


Program in Java using a high-performance numerical library
Learn the mathematics for a wide range of numerical computing algorithms
Convert ideas and equations into code
Put together algorithms and classes to build your own engineering solution
Build solvers for industrial optimization problems
Do data analysis using basic and advanced statistics
Who This Book Is For
Programmers, data scientists, and analysts with prior experience with programming in any language, especially Java.


Table of Contents

About the Authors...........................................................................................................i

Preface............................................................................................................................ii

1. Why Java?..............................................................................................................6

1.1. Java in 2020.....................................................................................................6

1.2. Java vs. C++....................................................................................................6

1.3. Java vs. Python................................................................................................6

1.4. Java in the future .............................................................................................6

2. Data Structures.......................................................................................................7

2.1. Function...........................................................................................................7
2.2. Polynomial ......................................................................................................7

3. Linear Algebra .......................................................................................................8

3.1. Vector and Matrix ...........................................................................................8

3.1.1. Vector Properties .....................................................................................8

3.1.2. Element-wise Operations.........................................................................8

3.1.3. Norm ........................................................................................................9

3.1.4. Inner product and angle ...........................................................................9

3.2. Matrix............................................................................................................10

3.3. Determinant, Transpose and Inverse.............................................................10
3.4. Diagonal Matrices and Diagonal of a Matrix................................................10

3.5. Eigenvalues and Eigenvectors.......................................................................10

3.5.1. Householder Tridiagonalization and QR Factorization Methods..........10

3.5.2. Transformation to Hessenberg Form (Nonsymmetric Matrices)...........10

4. Finding Roots of Single Variable Equations .......................................................11
4.1. Bracketing Methods ......................................................................................11

4.1.1. Bisection Method ...................................................................................11

4.2. Open Methods...............................................................................................11

4.2.1. Fixed-Point Method ...............................................................................11

4.2.2. Newton's Method (Newton-Raphson Method) .....................................11

4.2.3. Secant Method .......................................................................................11

4.2.4. Brent's Method ......................................................................................11

5. Finding Roots of Systems of Equations...............................................................12

5.1. Linear Systems of Equations.........................................................................12

5.2. Gauss Elimination Method............................................................................12

5.3. LU Factorization Methods ............................................................................12

5.3.1. Cholesky Factorization ..........................................................................12

5.4. Iterative Solution of Linear Systems.............................................................12

5.5. System of Nonlinear Equations.....................................................................12
6. Curve Fitting and Interpolation............................................................................14

6.1. Least-Squares Regression .............................................................................14

6.2. Linear Regression..........................................................................................14

6.3. Polynomial Regression..................................................................................14

6.4. Polynomial Interpolation...............................................................................14

6.5. Spline Interpolation .......................................................................................14

7. Numerical Differentiation and Integration...........................................................15

7.1. Numerical Differentiation .............................................................................15

7.2. Finite-Difference Formulas...........................................................................15

7.3. Newton-Cotes Formulas................................................................................15

7.3.1. Rectangular Rule....................................................................................15

7.3.2. Trapezoidal Rule....................................................................................15

7.3.3. Simpson's Rules.....................................................................................15

7.3.4. Higher-Order Newton-Coles Formulas..................................................15

7.4. Romberg Integration .....................................................................................15

7.4.1. Gaussian Quadrature..............................................................................15

7.4.2. Improper Integrals..................................................................................15

8. Numerical Solution of Initial-Value Problems....................................................16

8.1. One-Step Methods.........................................................................................16

8.2. Euler's Method..............................................................................................16

8.3. Runge-Kutta Methods...................................................................................16

8.4. Systems of Ordinary Differential Equations.................................................16

9. Numerical Solution of Partial Differential Equations..........................................17

9.1. Elliptic Partial Differential Equations...........................................................17

9.1.1. Dirichlet Problem...................................................................................17

9.2. Parabolic Partial Differential Equations........................................................17

9.2.1. Finite-Difference Method ......................................................................17

9.2.2. Crank-Nicolson Method.........................................................................17

9.3. Hyperbolic Partial Differential Equations.....................................................17

10..................................................................................................................................18

11..................................................................................................................................19

12. Random Numbers and Simulation ....................................................................20

12.1. Uniform Distribution .................................................................................20

12.2. Normal Distribution...................................................................................20

12.3. Exponential Distribution............................................................................20

12.4. Poisson Distribution ..................................................................................20

12.5. Beta Distribution........................................................................................20
12.6. Gamma Distribution ..................................................................................20

12.7. Multi-dimension Distribution ....................................................................20

13. Unconstrainted Optimization ............................................................................21

13.1. Single Variable Optimization ....................................................................21

13.2. Multi Variable Optimization .....................................................................21

14. Constrained Optimization .................................................................................22

14.1. Linear Programming..................................................................................22

14.2. Quadratic Programming ............................................................................22

14.3. Second Order Conic Programming............................................................22

14.4. Sequential Quadratic Programming...........................................................22

14.5. Integer Programming.................................................................................22

15. Heuristic Optimization......................................................................................23

15.1. Genetic Algorithm .....................................................................................23

15.2. Simulated Annealing .................................................................................23

16. Basic Statistics..................................................................................................24

16.1. Mean, Variance and Covariance................................................................24

16.2. Moment......................................................................................................24

16.3. Rank...........................................................................................................24

17. Linear Regression .............................................................................................25

17.1. Least-Squares Regression..........................................................................25

17.2. General Linear Least Squares....................................................................25

18. Time Series Analysis ........................................................................................26

18.1. Univariate Time Series..............................................................................26
18.2. Multivariate Time Series ...........................................................................26

18.3. ARMA .......................................................................................................26

18.4. GARCH .....................................................................................................26

18.5. Cointegration .............................................................................................26

19. Bibliography .....................................................................................................27

20. Index .....................................................................................................

Show more
Product Details
EAN
9781484267967
ISBN
1484267966
Publisher
Other Information
Illustrated
Dimensions
25.7 x 17.5 x 4.3 centimeters (2.20 kg)

Table of Contents

1: Introduction to Numerical Methods in Java.- 2: Linear Algebra.- 3: Finding Roots of Equations.- 4: Finding Roots of Systems of Equations.- 5: Curve Fitting and Interpolation.- 6: Numerical Differentiation and Integration.- 7: Ordinary Differential Equations.- 8: Partial Differential Equations.- 9: Unconstrained Optimization.- 10: Constrained Optimization.- 11: Heuristics.- 12: Basic Statistics.- 13: Random Numbers and Simulation.- 14: Linear Regression.- 15: Time Series Analysis.- References.

About the Author

Haksun Li, PhD, is founder of NM Group, a scientific and mathematical research company. He has the vision of “Making the World Better Using Mathematics”. Under his leadership, the firm serves worldwide brokerage houses and funds, multinational corporations and very high net worth individuals. Haksun is an expert in options trading, asset allocation, portfolio optimization and fixed-income product pricing. He has coded up a variety of numerical software, including SuanShu (a library of numerical methods), NM Dev (a library of numerical methods), AlgoQuant (a library for financial analytics), NMRMS (a portfolio management system for equities), and supercurve (a fixed-income options pricing system). Prior to this, Haksun was a quantitative trader/quantitative analyst with multiple investment banks. He has worked in New York, London, Tokyo, and Singapore. 
Additionally, Haksun is the vice dean of the Big Data Finance and Investment Institute of Fudan University, China. He was an adjunct professor with multiple universities. He has taught at the National University of Singapore (mathematics), Nanyang Technological University (business school), Fudan University (economics), as well as Hong Kong University of Science and Technology (mathematics). Dr. Haksun Li has a B.S. and M.S. in pure and financial mathematics from the University of Chicago, and an M.S. and a PhD in computer science and engineering from the University of Michigan, Ann Arbor.

Reviews

“The book is primarily a user’s guide to the NM DEV commercial software library … .” (Anthony J. Duben, Computing Reviews, December 6, 2022)

Show more
Review this Product
Ask a Question About this Product More...
 
Item ships from and is sold by Fishpond World Ltd.

Back to top