Warehouse Stock Clearance Sale

Grab a bargain today!


Sign Up for Fishpond's Best Deals Delivered to You Every Day
Go
Signal Processing and ­Machine Learning with ­Applications

Rating
Format
Hardback, 607 pages
Published
Switzerland, 31 October 2022


The authors offer a comprehensive guide to machine learning applied to signal processing and recognition problems, and then discuss real applications in domains such as speech processing and biomedical signal processing, with a focus on handling noise. This textbook is intended for advanced undergraduate and graduate students of computer science and engineering.



Prof. Michael M. Richter completed his PhD on mathematical logic at the University of Freiburg, and his Habilitation in mathematics at the University of Tübingen. He taught at the University of Texas at Austin and at RWTH Aachen, in addition to numerous visiting professorships. Most recently he held a chair in computer science at the University of Kaiserslautern, where he was also the founding scientific director of the DFKI (German Research Center for Artificial Intelligence). He is currently an adjunct professor at the University of Calgary. He has taught, researched, and published extensively in the areas of mathematical logic and artificial intelligence. Prof. Richter is one of the pioneers of case-based reasoning: he founded the leading European event on the subject, he led many of the key academic research projects, and he demonstrated the real-world viability of the approach with successful commercial products.


Dr. Sheuli Paul completed her PhD on a dynamic automatic noisy speech recognition system in Kaiserslautern. Her interests include speech recognition and signal processing.


Part I Realms of Signal Processing


1 Digital Signal Representation


1.1 Introduction


1.2 Numbers


1.2.1 Numbers and Numerals


1.2.2 Types of Numbers


1.2.3 Positional Number Systems

1.3 Sampling and Reconstruction of Signals


1.3.1 Scalar Quantization


1.3.2 Quantization Noise

1.3.3 Signal-To-Noise Ratio


1.3.4 Transmission Rate


1.3.5 Nonuniform Quantizer


1.3.6 Companding


1.4 Data Representations


1.4.1 Fixed-Point Number Representations


1.4.2 Sign-Magnitude Format


1.4.3 One's-Complement Format


1.4.4 Two's-Complement Format


1.5 Fix-Point DSP's

1.6 Fixed-Point Representations Based on Radix-Point


1.7 Dynamic Range


1.8 Precision

1.9 Background Information


1.10 Exercises


2 Signal Processing Background


2.1 Basic Concepts


2.2 Signals and Information


2.3 Signal Processing


ix


x Contents


2.4 Discrete Signal Representations


2.5 Delta and Impulse Function

2.6 Parseval's Theorem


2.7 Gibbs Phenomenon


2.8 Wold Decomposition


2.9 State Space Signal Processing


2.10 Common Measurements


2.10.1 Convolution


2.10.2 Correlation


2.10.3 Auto Covariance


2.10.4 Coherence


2.10.5 Power Spectral Density (PSD)

2.10.6 Estimation and Detection


2.10.7 Central Limit Theorem


2.10.8 Signal Information Processing Types

2.10.9 Machine Learning


2.10.10Exercises


3 Fundamentals of Signal Transformations


3.1 Transformation Methods


3.1.1 Laplace Transform


3.1.2 Z-Transform

3.1.3 Fourier Series


3.1.4 Fourier Transform


3.1.5 Discrete Fourier Transform and Fast Fourier Transform


3.1.6 Zero Padding


3.1.7 Overlap-Add and Overlap-Save Convolution


Algorithms


3.1.8 Short Time Fourier Transform (STFT)


3.1.9 Wavelet Transform


3.1.10 Windowing Signal and the DCT Transforms


3.2 Analysis and Comparison of Transformations


3.3 Background Information


3.4 Exercises


3.5 References

4 Digital Filters


4.1 Introduction


4.1.1 FIR and IIR Filters

4.1.2 Bilinear Transform


4.2 Windowing for Filtering


4.3 Allpass Filters


4.4 Lattice Filters


4.5 All-Zero Lattice Filter


4.6 Lattice Ladder Filters


Contents xi


4.7 Comb Filter


4.8 Notch Filter


4.9 Background Information

4.10 Exercises


5 Estimation and Detection


5.1 Introduction

5.2 Hypothesis Testing


5.2.1 Bayesian Hypothesis Testing


5.2.2 MAP Hypothesis Testing


5.3 Maximum Likelihood (ML) Hypothesis Testing


5.4 Standard Analysis Techniques


5.4.1 Best Linear Unbiased Estimator (BLUE)


5.4.2 Maximum Likelihood Estimator (MLE)


5.4.3 Least Squares Estimator (LSE)


5.4.4 Linear Minimum Mean Square Error Estimator


(LMMSE)


5.5 Exercises


6 Adaptive Signal Processing


6.1 Introduction


6.2 Parametric Signal Modeling


6.2.1 Parametric Estimation


6.3 Wiener Filtering

6.4 Kalman Filter


6.4.1 Smoothing


6.5 Particle Filter


6.6 Fundamentals of Monte Carl


6.6.1 Importance Sampling (IS)


6.7 Non-Parametric Signal Modeling


6.8 Non-Parametric Estimation


6.8.1 Correlogram


6.8.2 Periodogram


6.9 Filter Bank Method

6.10 Quadrature Mirror Filter Bank (QMF)


6.11 Background Information


6.12 Exercises

7 Spectral Analysis


7.1 Introduction


7.2 Adaptive Spectral Analysis

7.3 Multivariate Signal Processing


7.3.1 Sub-band Coding and Subspace Analysis


7.4 Wavelet Analysis

7.5 Adaptive Beam Forming


xii Contents


7.6 Independent Component Analysis (ICA)


7.7 Principal Component Analysis (PCA)


7.8 Best Basis Algorithms


7.9 Background Information


7.10 Exercises


Part II Machine Learning and Recognition


8 General Learning


8.1 Introduction to Learning


8.2 The Learning Phases


8.2.1 Search and Utility


8.3 Search

8.3.1 General Search Model


8.3.2 Preference relations


8.3.3 Different learning methods


8.3.4 Similarities


8.3.5 Learning to Recognize


8.3.6 Learning again

8.4 Background Information


8.5 Exercises


9 Signal Processes, Learning, and Recognition


9.1 Learning


9.2 Bayesian Formalism


9.2.1 Dynamic Bayesian Theory


9.2.2 Recognition and Search


9.2.3 Influences


9.3 Subjectivity


9.4 Background Information

9.5 Exercises


10 Stochastic Processes


10.1 Preliminaries on Probabilities

10.2 Basic Concepts of Stochastic Processes


10.2.1 Markov Processes


10.2.2 Hidden Stochastic Models (HSM)

10.2.3 HSM Topology


10.2.4 Learning Probabilities


10.2.5 Re-estimation


10.2.6 Redundancy


10.2.7 Data Preparation


10.2.8 Proper Redundancy Removal


10.3 Envelope Detection


10.3.1 Silence Threshold Selection


10.3.2 Pre-emphasis


Contents xiii

10.4 Several Processes


10.4.1 Similarity


10.4.2 The Local-Global Principle


10.4.3 HSM Similarities


10.5 Conflict and Support


10.6 Examples and Applications


10.7 Predictions


10.8 Background Information


10.9 Exercises


11 Feature Extraction


11.1 Feature Extractions


11.2 Basic Techniques


11.2.1 Spectral Shaping

11.3 Spectral Analysis and Feature Transformation


11.3.1 Parametric Feature Transformations and Cepstrum


11.3.2 Standard Feature Extraction Techniques

11.3.3 Frame Energy


11.4 Linear Prediction Coe_cients (LPC)


11.5 Linear Prediction Cepstral Coe_cients (LPCC)


11.6 Adaptive Perceptual Local Trigonometric Transformation


(APLTT)


11.7 Search


11.7.1 General Search Model


11.8 Predictions

11.8.1 Purpose


11.8.2 Linear Prediction


11.8.3 Mean Squared Error Minimization


11.8.4 Computation of Probability of an Observation Sequence


11.8.5 Forward and Backward Prediction


11.8.6 Forward-Backward Prediction


11.9 Background Information


11.10Exercises


12 Unsupervised Learning


12.1 Generalities


12.2 Clustering Principles


12.3 Cluster Analysis Methods


12.4 Special Methods

12.4.1 K-means


12.4.2 Vector Quantization (VQ)


12.4.3 Expectation Maximization (EM)


12.4.4 GMM Clustering


12.5 Background Information


12.6 Exercises


xiv Contents


13 Markov Model and Hidden Stochastic Model


13.1 Markov Process


13.2 Gaussian Mixture Model (GMM)


13.3 Advantages of using GMM


13.4 Linear Prediction Analysis


13.4.1 Autocorrelation Method

13.4.2 Yule-Walker Approach


13.4.3 Covariance Method


13.4.4 Comparison of Correlation and Covariance methods


13.5 The ULS Approach


13.6 Comparison of ULS and Covariance Methods


13.7 Forward Prediction


13.8 Backward Prediction


13.9 Forward-Backward Prediction


13.10Baum-Welch Algorithm


13.11Viterbi Algorithm

13.12Background Information


13.13Exercises


14 Fuzzy Logic and Rough Sets


14.1 Rough Sets


14.2 Fuzzy Sets


14.2.1 Basis Elements


14.2.2 Possibility and Necessity


14.3 Fuzzy Clustering


14.4 Fuzzy Probabilities


14.5 Background Information

14.6 Exercises


15 Neural Networks


15.1 Neural Network Types

15.1.1 Neural Network Training


15.1.2 Neural Network Topology


15.2 Parallel Distributed Processing


15.2.1 Forward and Backward Uses


15.2.2 Learning


15.3 Applications to Signal Processing


15.4 Background Information


15.5 Exercises


Part III Real Aspects and Applications


Contents xv

16 Noisy Signals


16.1 Introduction


16.2 Noise Questions

16.3 Sources of Noise


16.4 Noise Measurement


16.5 Weights and A-Weights


16.6 Signal to Noise Ratio (SNR)


16.7 Noise Measuring Filters and Evaluation


16.8 Types of noise


16.9 Origin of noises


16.10Box Plot Evaluation


16.11Individual noise types


16.11.1Residual

16.11.2Mild


16.11.3Steady-unsteady Time varying Noise


16.11.4Strong Noise


16.12Solution to Strong Noise: Matched Filter


16.13Background Information


16.14Exercises


17 Reasoning Methods and Noise Removal


17.1 Generalities


17.2 Special Noise Removal Methods


17.2.1 Residual Noise


17.2.2 Mild Noise


17.2.3 Steady-Unsteady Noise


17.2.4 Strong Noise

17.3 Poisson Distribution


17.3.1 Outliers and Shots


17.3.2 Underlying probability of Shots


17.4 Kalman Filter


17.4.1 Prediction Estimates


17.4.2 White noise Kalman filtering


17.4.3 Application of Kalman filter


17.5 Classification, Recognition and Learning


17.5.1 Summary of the used concepts


17.6 Principle Component Analysis (PCA)


17.7 Reasoning Methods


17.7.1 Case-Based Reasoning (CBR)


17.8 Background Information

17.9 Exercises


xvi Contents


18 Audio Signals and Speech Recognition


18.1 Generalities of Speech


18.2 Categories of Speech Recognition


18.3 Automatic Speech Recognition


18.3.1 System Structure


18.4 Speech Production Model


18.5 Acoustics


18.6 Human Speech Production


18.6.1 The Human Speech Generation


18.6.2 Excitation


18.6.3 Voiced Speech

18.6.4 Unvoiced Speech


18.7 Silence Regions


18.8 Glottis


18.9 Lips


18.10Plosive Speech Source


18.11Vocal-Tract


18.12Parametric and Non-Parametric Models

18.13Formants


18.14Strong Noise


18.15Background Information


18.16Exercises


19 Noisy Speech


19.1 Introduction


19.2 Colored Noise


19.2.1 Additional types of Colored Noise


19.3 Poisson Processes and Shots


19.4 Matched Filters


19.5 Shot Noise


19.6 Background Information


19.7 Exercises

20 Aspects Of Human Hearing


20.1 Human Ear


20.2 Human Auditory System

20.3 Critical Bands and Scales


20.3.1 Mel Scale


20.3.2 Bark Scale


20.3.3 Erb Scale


20.3.4 Greenwood Scale


20.4 Filter Banks


20.4.1 ICA Network

20.4.2 Auditory Filter Banks


20.4.3 Filter Banks


Contents xvii


20.4.4 Mel Critical Filter Bank


20.5 Psycho-acoustic Phenomena


20.5.1 Perceptual Measurement


20.5.2 Human Hearing and Perception


20.5.3 Sound Pressure Level (SPL)


20.5.4 Absolute Threshold of Hearing (ATH)


20.6 Perceptual Adaptation


20.7 Auditory System and Hearing Model


20.8 Auditory Masking and Masking Frequency


20.9 Perceptual Spectral Features


20.10Critical Band Analysis


20.11Equal Loudness Pre-emphasis


20.12Perceptual Transformation

20.13Feature Transformation


20.14Filters and Human Ear


20.15Temporal Aspects


20.16Background Information


20.17Exercises


21 Speech Features


21.1 Generalities


21.2 Cost Functions


21.3 Special Feature Extractions


21.3.1 MFCC Features


21.3.2 Feature Transformation applying DCT


21.4 Background Information


21.5 Exercises

22 Hidden Stochastic Model for Speech


22.1 General


22.2 Hidden Stochastic Model

22.3 Forward and Backward Predictions


22.3.1 Forward Algorithm


22.3.2 Backward Algorithm

22.4 Forward-Backward Prediction


22.5 Burg Approach


22.6 Graph Search


22.6.1 Recognition Model with Search


22.7 Semantic Issues and Industrial Applications


22.8 Problems with Noise


22.9 Aspects of Music


22.10Music reception


22.11Background Information


22.12Exercises

xviii Contents


23 Different Speech Applications - Part A


23.1 Generalities


23.2 Example Applications


23.2.1 Experimental laboratory


23.2.2 Health care support (everyday actions)


23.2.3 Diagnostic support for persons with possible dementia


23.2.4 Noise


23.3 Background Information


23.4 Exercises


24 Different Speech Applications - Part B


24.1 Introduction


24.2 Discrete-Time Signals


24.3 Speech Processing


24.3.1 Framing


24.3.2 Pre-emphasis


24.3.3 Windowing

24.3.4 Fourier Transform


24.3.5 Mel-Filtering


24.3.6 Mel-Frequency Cepstral Coeffcients


24.4 Speech Analysis and Sound Effects Laboratory (SASE_Lab)


24.5 Wake-Up-Word Speech Recognition

24.5.1 Introduction


24.5.2 Wake-up-Word Paradigm


24.5.3 Wake-Up-Word: Definition


24.5.4 Wake-Up-Word System


24.5.5 Front-End of the Wake-Up-Word System


24.6 Conclusion


24.6.1 Wake-Up-Word: Tool Demo


24.6.2 Elevator Simulator


24.7 Background Information


24.8 Exercises

24.9 Speech Analysis and Sound E_ects Laboratory (SASE_Lab)"


25 Biomedical Signals: ECG, EEG


25.1 ECG signals


25.1.1 Bioelectric Signals


25.1.2 Noise


25.2 EEG Signals


25.2.1 General properties


25.2.2 Signal types and properties


25.2.3 Disadvantages

25.3 Neural Network use


25.4 Major Research Questions


25.5 Background Information


Contents xix


25.6 Exercises


26 Seismic Signals


26.1 Generalities


26.2 Sources of seismic signals


26.3 Intermediate elements


26.4 Practical Data Sources

26.5 Major seismic problems


26.6 Noise


26.7 Background Information


26.8 Exercises


27 Radar Signals


27.1 Introduction


27.2 Radar Types and Applications


27.3 Doppler Equations, Ambiguity Function(AF) and Matched


Filter


27.4 Moving Target Detection


27.5 Applications and Discussions


27.6 Examples


27.7 Background Information

27.8 Exercises


28 Visual Story Telling


28.1 Introduction

28.1.1 Common Visualization Approaches


28.2 Analytics and Visualization


28.2.1 Visualization

28.2.2 Visual Data Minin


28.3 Communication and Visualization


28.4 Background Information


28.5 Exercises


29 Digital Processes and Multimedia


29.1 Images


29.1.1 Digital Image Processing


29.1.2 Images as Matrices


29.1.3 Gray Scale Images


29.2 Spatial Filtering


29.2.1 Linear Filtering of Images


29.2.2 Separable Filters


29.2.3 Mechanics of Linear Spatial Filtering Operation

29.3 Median Filtering


29.4 Color Equalization


29.4.1 Image Transformations

29.4.2 Examples of Image Transformation Matrixes


xx Contents


29.5 Basic Image Statistics


29.6 Abstraction Levels of Images and its Representations


29.6.1 Lowest Level


29.6.2 Geometric Level


29.6.3 Domain Level


29.6.4 Segmentation


29.7 Background Information


29.8 Exercises

30 Visualizations of Emergency Operation Centre


30.1 Introduction


30.2 Communications in Emergency Situations


30.3 Emergency Scenario


30.3.1 Classification and EOC Scenario


30.4 Technical Aspects and Techniques


30.4.1 Classification


30.4.2 Clustering


30.5 Background Information

30.6 Exercises


31 Intelligent Interactive Communications


31.1 Introduction


31.2 Spoken Dialogue System


31.3 Gesture based Interaction


31.4 Object Recognition and Identification

31.5 Visual Story Telling


31.6 Virtual Environment for Personal Assistance


31.7 Sensor Fusion

31.8 Intelligent Human Machine for Communication


Application Scenario


31.9 Background Information


31.10Exercises


32 Comparisons


32.1 Generalities


32.1.1 EEG and ECG


32.1.2 Speech and biomedical applications


32.1.3 Seismic and biomedical signals


32.1.4 Speech and Images


32.2 Overall


32.3 Background Information


32.3.1 General

32.4 Exercises


Glossary

Show more

Our Price
HK$593
Ships from UK Estimated delivery date: 21st Apr - 28th Apr from UK
Free Shipping Worldwide

Buy Together
+
Buy Together
HK$869

Product Description


The authors offer a comprehensive guide to machine learning applied to signal processing and recognition problems, and then discuss real applications in domains such as speech processing and biomedical signal processing, with a focus on handling noise. This textbook is intended for advanced undergraduate and graduate students of computer science and engineering.



Prof. Michael M. Richter completed his PhD on mathematical logic at the University of Freiburg, and his Habilitation in mathematics at the University of Tübingen. He taught at the University of Texas at Austin and at RWTH Aachen, in addition to numerous visiting professorships. Most recently he held a chair in computer science at the University of Kaiserslautern, where he was also the founding scientific director of the DFKI (German Research Center for Artificial Intelligence). He is currently an adjunct professor at the University of Calgary. He has taught, researched, and published extensively in the areas of mathematical logic and artificial intelligence. Prof. Richter is one of the pioneers of case-based reasoning: he founded the leading European event on the subject, he led many of the key academic research projects, and he demonstrated the real-world viability of the approach with successful commercial products.


Dr. Sheuli Paul completed her PhD on a dynamic automatic noisy speech recognition system in Kaiserslautern. Her interests include speech recognition and signal processing.


Part I Realms of Signal Processing


1 Digital Signal Representation


1.1 Introduction


1.2 Numbers


1.2.1 Numbers and Numerals


1.2.2 Types of Numbers


1.2.3 Positional Number Systems

1.3 Sampling and Reconstruction of Signals


1.3.1 Scalar Quantization


1.3.2 Quantization Noise

1.3.3 Signal-To-Noise Ratio


1.3.4 Transmission Rate


1.3.5 Nonuniform Quantizer


1.3.6 Companding


1.4 Data Representations


1.4.1 Fixed-Point Number Representations


1.4.2 Sign-Magnitude Format


1.4.3 One's-Complement Format


1.4.4 Two's-Complement Format


1.5 Fix-Point DSP's

1.6 Fixed-Point Representations Based on Radix-Point


1.7 Dynamic Range


1.8 Precision

1.9 Background Information


1.10 Exercises


2 Signal Processing Background


2.1 Basic Concepts


2.2 Signals and Information


2.3 Signal Processing


ix


x Contents


2.4 Discrete Signal Representations


2.5 Delta and Impulse Function

2.6 Parseval's Theorem


2.7 Gibbs Phenomenon


2.8 Wold Decomposition


2.9 State Space Signal Processing


2.10 Common Measurements


2.10.1 Convolution


2.10.2 Correlation


2.10.3 Auto Covariance


2.10.4 Coherence


2.10.5 Power Spectral Density (PSD)

2.10.6 Estimation and Detection


2.10.7 Central Limit Theorem


2.10.8 Signal Information Processing Types

2.10.9 Machine Learning


2.10.10Exercises


3 Fundamentals of Signal Transformations


3.1 Transformation Methods


3.1.1 Laplace Transform


3.1.2 Z-Transform

3.1.3 Fourier Series


3.1.4 Fourier Transform


3.1.5 Discrete Fourier Transform and Fast Fourier Transform


3.1.6 Zero Padding


3.1.7 Overlap-Add and Overlap-Save Convolution


Algorithms


3.1.8 Short Time Fourier Transform (STFT)


3.1.9 Wavelet Transform


3.1.10 Windowing Signal and the DCT Transforms


3.2 Analysis and Comparison of Transformations


3.3 Background Information


3.4 Exercises


3.5 References

4 Digital Filters


4.1 Introduction


4.1.1 FIR and IIR Filters

4.1.2 Bilinear Transform


4.2 Windowing for Filtering


4.3 Allpass Filters


4.4 Lattice Filters


4.5 All-Zero Lattice Filter


4.6 Lattice Ladder Filters


Contents xi


4.7 Comb Filter


4.8 Notch Filter


4.9 Background Information

4.10 Exercises


5 Estimation and Detection


5.1 Introduction

5.2 Hypothesis Testing


5.2.1 Bayesian Hypothesis Testing


5.2.2 MAP Hypothesis Testing


5.3 Maximum Likelihood (ML) Hypothesis Testing


5.4 Standard Analysis Techniques


5.4.1 Best Linear Unbiased Estimator (BLUE)


5.4.2 Maximum Likelihood Estimator (MLE)


5.4.3 Least Squares Estimator (LSE)


5.4.4 Linear Minimum Mean Square Error Estimator


(LMMSE)


5.5 Exercises


6 Adaptive Signal Processing


6.1 Introduction


6.2 Parametric Signal Modeling


6.2.1 Parametric Estimation


6.3 Wiener Filtering

6.4 Kalman Filter


6.4.1 Smoothing


6.5 Particle Filter


6.6 Fundamentals of Monte Carl


6.6.1 Importance Sampling (IS)


6.7 Non-Parametric Signal Modeling


6.8 Non-Parametric Estimation


6.8.1 Correlogram


6.8.2 Periodogram


6.9 Filter Bank Method

6.10 Quadrature Mirror Filter Bank (QMF)


6.11 Background Information


6.12 Exercises

7 Spectral Analysis


7.1 Introduction


7.2 Adaptive Spectral Analysis

7.3 Multivariate Signal Processing


7.3.1 Sub-band Coding and Subspace Analysis


7.4 Wavelet Analysis

7.5 Adaptive Beam Forming


xii Contents


7.6 Independent Component Analysis (ICA)


7.7 Principal Component Analysis (PCA)


7.8 Best Basis Algorithms


7.9 Background Information


7.10 Exercises


Part II Machine Learning and Recognition


8 General Learning


8.1 Introduction to Learning


8.2 The Learning Phases


8.2.1 Search and Utility


8.3 Search

8.3.1 General Search Model


8.3.2 Preference relations


8.3.3 Different learning methods


8.3.4 Similarities


8.3.5 Learning to Recognize


8.3.6 Learning again

8.4 Background Information


8.5 Exercises


9 Signal Processes, Learning, and Recognition


9.1 Learning


9.2 Bayesian Formalism


9.2.1 Dynamic Bayesian Theory


9.2.2 Recognition and Search


9.2.3 Influences


9.3 Subjectivity


9.4 Background Information

9.5 Exercises


10 Stochastic Processes


10.1 Preliminaries on Probabilities

10.2 Basic Concepts of Stochastic Processes


10.2.1 Markov Processes


10.2.2 Hidden Stochastic Models (HSM)

10.2.3 HSM Topology


10.2.4 Learning Probabilities


10.2.5 Re-estimation


10.2.6 Redundancy


10.2.7 Data Preparation


10.2.8 Proper Redundancy Removal


10.3 Envelope Detection


10.3.1 Silence Threshold Selection


10.3.2 Pre-emphasis


Contents xiii

10.4 Several Processes


10.4.1 Similarity


10.4.2 The Local-Global Principle


10.4.3 HSM Similarities


10.5 Conflict and Support


10.6 Examples and Applications


10.7 Predictions


10.8 Background Information


10.9 Exercises


11 Feature Extraction


11.1 Feature Extractions


11.2 Basic Techniques


11.2.1 Spectral Shaping

11.3 Spectral Analysis and Feature Transformation


11.3.1 Parametric Feature Transformations and Cepstrum


11.3.2 Standard Feature Extraction Techniques

11.3.3 Frame Energy


11.4 Linear Prediction Coe_cients (LPC)


11.5 Linear Prediction Cepstral Coe_cients (LPCC)


11.6 Adaptive Perceptual Local Trigonometric Transformation


(APLTT)


11.7 Search


11.7.1 General Search Model


11.8 Predictions

11.8.1 Purpose


11.8.2 Linear Prediction


11.8.3 Mean Squared Error Minimization


11.8.4 Computation of Probability of an Observation Sequence


11.8.5 Forward and Backward Prediction


11.8.6 Forward-Backward Prediction


11.9 Background Information


11.10Exercises


12 Unsupervised Learning


12.1 Generalities


12.2 Clustering Principles


12.3 Cluster Analysis Methods


12.4 Special Methods

12.4.1 K-means


12.4.2 Vector Quantization (VQ)


12.4.3 Expectation Maximization (EM)


12.4.4 GMM Clustering


12.5 Background Information


12.6 Exercises


xiv Contents


13 Markov Model and Hidden Stochastic Model


13.1 Markov Process


13.2 Gaussian Mixture Model (GMM)


13.3 Advantages of using GMM


13.4 Linear Prediction Analysis


13.4.1 Autocorrelation Method

13.4.2 Yule-Walker Approach


13.4.3 Covariance Method


13.4.4 Comparison of Correlation and Covariance methods


13.5 The ULS Approach


13.6 Comparison of ULS and Covariance Methods


13.7 Forward Prediction


13.8 Backward Prediction


13.9 Forward-Backward Prediction


13.10Baum-Welch Algorithm


13.11Viterbi Algorithm

13.12Background Information


13.13Exercises


14 Fuzzy Logic and Rough Sets


14.1 Rough Sets


14.2 Fuzzy Sets


14.2.1 Basis Elements


14.2.2 Possibility and Necessity


14.3 Fuzzy Clustering


14.4 Fuzzy Probabilities


14.5 Background Information

14.6 Exercises


15 Neural Networks


15.1 Neural Network Types

15.1.1 Neural Network Training


15.1.2 Neural Network Topology


15.2 Parallel Distributed Processing


15.2.1 Forward and Backward Uses


15.2.2 Learning


15.3 Applications to Signal Processing


15.4 Background Information


15.5 Exercises


Part III Real Aspects and Applications


Contents xv

16 Noisy Signals


16.1 Introduction


16.2 Noise Questions

16.3 Sources of Noise


16.4 Noise Measurement


16.5 Weights and A-Weights


16.6 Signal to Noise Ratio (SNR)


16.7 Noise Measuring Filters and Evaluation


16.8 Types of noise


16.9 Origin of noises


16.10Box Plot Evaluation


16.11Individual noise types


16.11.1Residual

16.11.2Mild


16.11.3Steady-unsteady Time varying Noise


16.11.4Strong Noise


16.12Solution to Strong Noise: Matched Filter


16.13Background Information


16.14Exercises


17 Reasoning Methods and Noise Removal


17.1 Generalities


17.2 Special Noise Removal Methods


17.2.1 Residual Noise


17.2.2 Mild Noise


17.2.3 Steady-Unsteady Noise


17.2.4 Strong Noise

17.3 Poisson Distribution


17.3.1 Outliers and Shots


17.3.2 Underlying probability of Shots


17.4 Kalman Filter


17.4.1 Prediction Estimates


17.4.2 White noise Kalman filtering


17.4.3 Application of Kalman filter


17.5 Classification, Recognition and Learning


17.5.1 Summary of the used concepts


17.6 Principle Component Analysis (PCA)


17.7 Reasoning Methods


17.7.1 Case-Based Reasoning (CBR)


17.8 Background Information

17.9 Exercises


xvi Contents


18 Audio Signals and Speech Recognition


18.1 Generalities of Speech


18.2 Categories of Speech Recognition


18.3 Automatic Speech Recognition


18.3.1 System Structure


18.4 Speech Production Model


18.5 Acoustics


18.6 Human Speech Production


18.6.1 The Human Speech Generation


18.6.2 Excitation


18.6.3 Voiced Speech

18.6.4 Unvoiced Speech


18.7 Silence Regions


18.8 Glottis


18.9 Lips


18.10Plosive Speech Source


18.11Vocal-Tract


18.12Parametric and Non-Parametric Models

18.13Formants


18.14Strong Noise


18.15Background Information


18.16Exercises


19 Noisy Speech


19.1 Introduction


19.2 Colored Noise


19.2.1 Additional types of Colored Noise


19.3 Poisson Processes and Shots


19.4 Matched Filters


19.5 Shot Noise


19.6 Background Information


19.7 Exercises

20 Aspects Of Human Hearing


20.1 Human Ear


20.2 Human Auditory System

20.3 Critical Bands and Scales


20.3.1 Mel Scale


20.3.2 Bark Scale


20.3.3 Erb Scale


20.3.4 Greenwood Scale


20.4 Filter Banks


20.4.1 ICA Network

20.4.2 Auditory Filter Banks


20.4.3 Filter Banks


Contents xvii


20.4.4 Mel Critical Filter Bank


20.5 Psycho-acoustic Phenomena


20.5.1 Perceptual Measurement


20.5.2 Human Hearing and Perception


20.5.3 Sound Pressure Level (SPL)


20.5.4 Absolute Threshold of Hearing (ATH)


20.6 Perceptual Adaptation


20.7 Auditory System and Hearing Model


20.8 Auditory Masking and Masking Frequency


20.9 Perceptual Spectral Features


20.10Critical Band Analysis


20.11Equal Loudness Pre-emphasis


20.12Perceptual Transformation

20.13Feature Transformation


20.14Filters and Human Ear


20.15Temporal Aspects


20.16Background Information


20.17Exercises


21 Speech Features


21.1 Generalities


21.2 Cost Functions


21.3 Special Feature Extractions


21.3.1 MFCC Features


21.3.2 Feature Transformation applying DCT


21.4 Background Information


21.5 Exercises

22 Hidden Stochastic Model for Speech


22.1 General


22.2 Hidden Stochastic Model

22.3 Forward and Backward Predictions


22.3.1 Forward Algorithm


22.3.2 Backward Algorithm

22.4 Forward-Backward Prediction


22.5 Burg Approach


22.6 Graph Search


22.6.1 Recognition Model with Search


22.7 Semantic Issues and Industrial Applications


22.8 Problems with Noise


22.9 Aspects of Music


22.10Music reception


22.11Background Information


22.12Exercises

xviii Contents


23 Different Speech Applications - Part A


23.1 Generalities


23.2 Example Applications


23.2.1 Experimental laboratory


23.2.2 Health care support (everyday actions)


23.2.3 Diagnostic support for persons with possible dementia


23.2.4 Noise


23.3 Background Information


23.4 Exercises


24 Different Speech Applications - Part B


24.1 Introduction


24.2 Discrete-Time Signals


24.3 Speech Processing


24.3.1 Framing


24.3.2 Pre-emphasis


24.3.3 Windowing

24.3.4 Fourier Transform


24.3.5 Mel-Filtering


24.3.6 Mel-Frequency Cepstral Coeffcients


24.4 Speech Analysis and Sound Effects Laboratory (SASE_Lab)


24.5 Wake-Up-Word Speech Recognition

24.5.1 Introduction


24.5.2 Wake-up-Word Paradigm


24.5.3 Wake-Up-Word: Definition


24.5.4 Wake-Up-Word System


24.5.5 Front-End of the Wake-Up-Word System


24.6 Conclusion


24.6.1 Wake-Up-Word: Tool Demo


24.6.2 Elevator Simulator


24.7 Background Information


24.8 Exercises

24.9 Speech Analysis and Sound E_ects Laboratory (SASE_Lab)"


25 Biomedical Signals: ECG, EEG


25.1 ECG signals


25.1.1 Bioelectric Signals


25.1.2 Noise


25.2 EEG Signals


25.2.1 General properties


25.2.2 Signal types and properties


25.2.3 Disadvantages

25.3 Neural Network use


25.4 Major Research Questions


25.5 Background Information


Contents xix


25.6 Exercises


26 Seismic Signals


26.1 Generalities


26.2 Sources of seismic signals


26.3 Intermediate elements


26.4 Practical Data Sources

26.5 Major seismic problems


26.6 Noise


26.7 Background Information


26.8 Exercises


27 Radar Signals


27.1 Introduction


27.2 Radar Types and Applications


27.3 Doppler Equations, Ambiguity Function(AF) and Matched


Filter


27.4 Moving Target Detection


27.5 Applications and Discussions


27.6 Examples


27.7 Background Information

27.8 Exercises


28 Visual Story Telling


28.1 Introduction

28.1.1 Common Visualization Approaches


28.2 Analytics and Visualization


28.2.1 Visualization

28.2.2 Visual Data Minin


28.3 Communication and Visualization


28.4 Background Information


28.5 Exercises


29 Digital Processes and Multimedia


29.1 Images


29.1.1 Digital Image Processing


29.1.2 Images as Matrices


29.1.3 Gray Scale Images


29.2 Spatial Filtering


29.2.1 Linear Filtering of Images


29.2.2 Separable Filters


29.2.3 Mechanics of Linear Spatial Filtering Operation

29.3 Median Filtering


29.4 Color Equalization


29.4.1 Image Transformations

29.4.2 Examples of Image Transformation Matrixes


xx Contents


29.5 Basic Image Statistics


29.6 Abstraction Levels of Images and its Representations


29.6.1 Lowest Level


29.6.2 Geometric Level


29.6.3 Domain Level


29.6.4 Segmentation


29.7 Background Information


29.8 Exercises

30 Visualizations of Emergency Operation Centre


30.1 Introduction


30.2 Communications in Emergency Situations


30.3 Emergency Scenario


30.3.1 Classification and EOC Scenario


30.4 Technical Aspects and Techniques


30.4.1 Classification


30.4.2 Clustering


30.5 Background Information

30.6 Exercises


31 Intelligent Interactive Communications


31.1 Introduction


31.2 Spoken Dialogue System


31.3 Gesture based Interaction


31.4 Object Recognition and Identification

31.5 Visual Story Telling


31.6 Virtual Environment for Personal Assistance


31.7 Sensor Fusion

31.8 Intelligent Human Machine for Communication


Application Scenario


31.9 Background Information


31.10Exercises


32 Comparisons


32.1 Generalities


32.1.1 EEG and ECG


32.1.2 Speech and biomedical applications


32.1.3 Seismic and biomedical signals


32.1.4 Speech and Images


32.2 Overall


32.3 Background Information


32.3.1 General

32.4 Exercises


Glossary

Show more
Product Details
EAN
9783319453712
ISBN
3319453718
Publisher
Other Information
Illustrated
Dimensions
23.4 x 15.6 x 3.5 centimeters (1.14 kg)

Table of Contents

Part I Realms of Signal Processing.- 1 Digital Signal Representation.- 1.1 Introduction.- 1.2 Numbers.- 1.2.1 Numbers and Numerals.- 1.2.2 Types of Numbers.- 1.2.3 Positional Number Systems.- 1.3 Sampling and Reconstruction of Signals.- 1.3.1 Scalar Quantization.- 1.3.2 Quantization Noise.- 1.3.3 Signal-To-Noise Ratio.- 1.3.4 Transmission Rate.- 1.3.5 Nonuniform Quantizer.- 1.3.6 Companding.- 1.4 Data Representations.- 1.4.1 Fixed-Point Number Representations.- 1.4.2 Sign-Magnitude Format.- 1.4.3 One’s-Complement Format.- 1.4.4 Two’s-Complement Format.- 1.5 Fix-Point DSP’s.- 1.6 Fixed-Point Representations Based on Radix-Point.- 1.7 Dynamic Range.- 1.8 Precision.- 1.9 Background Information.- 1.10 Exercises.- 2 Signal Processing Background.- 2.1 Basic Concepts.- 2.2 Signals and Information.- 2.3 Signal Processing.- ix.- x Contents.- 2.4 Discrete Signal Representations.- 2.5 Delta and Impulse Function.- 2.6 Parseval’s Theorem.- 2.7 Gibbs Phenomenon.- 2.8 Wold Decomposition.- 2.9 State Space Signal Processing.- 2.10 Common Measurements.- 2.10.1 Convolution.- 2.10.2 Correlation.- 2.10.3 Auto Covariance.- 2.10.4 Coherence.- 2.10.5 Power Spectral Density (PSD).- 2.10.6 Estimation and Detection.- 2.10.7 Central Limit Theorem.- 2.10.8 Signal Information Processing Types.- 2.10.9 Machine Learning.- 2.10.10Exercises.- 3 Fundamentals of Signal Transformations.- 3.1 Transformation Methods.- 3.1.1 Laplace Transform.- 3.1.2 Z-Transform .- 3.1.3 Fourier Series.- 3.1.4 Fourier Transform.- 3.1.5 Discrete Fourier Transform and Fast Fourier Transform .- 3.1.6 Zero Padding.- 3.1.7 Overlap-Add and Overlap-Save Convolution.- Algorithms.- 3.1.8 Short Time Fourier Transform (STFT).- 3.1.9 Wavelet Transform.- 3.1.10 Windowing Signal and the DCT Transforms.- 3.2 Analysis and Comparison of Transformations.- 3.3 Background Information.- 3.4 Exercises.- 3.5 References.- 4 Digital Filters.- 4.1 Introduction.- 4.1.1 FIR and IIR Filters.- 4.1.2 Bilinear Transform.-4.2 Windowing for Filtering.- 4.3 Allpass Filters.- 4.4 Lattice Filters.- 4.5 All-Zero Lattice Filter.- 4.6 Lattice Ladder Filters.- Contents xi.- 4.7 Comb Filter.- 4.8 Notch Filter.- 4.9 Background Information.- 4.10 Exercises.- 5 Estimation and Detection.- 5.1 Introduction.- 5.2 Hypothesis Testing.- 5.2.1 Bayesian Hypothesis Testing.- 5.2.2 MAP Hypothesis Testing.- 5.3 Maximum Likelihood (ML) Hypothesis Testing.- 5.4 Standard Analysis Techniques.- 5.4.1 Best Linear Unbiased Estimator (BLUE).- 5.4.2 Maximum Likelihood Estimator (MLE).- 5.4.3 Least Squares Estimator (LSE).- 5.4.4 Linear Minimum Mean Square Error Estimator.- (LMMSE).- 5.5 Exercises.- 6 Adaptive Signal Processing.- 6.1 Introduction.- 6.2 Parametric Signal Modeling.- 6.2.1 Parametric Estimation.- 6.3 Wiener Filtering.- 6.4 Kalman Filter.- 6.4.1 Smoothing.- 6.5 Particle Filter.- 6.6 Fundamentals of Monte Carl.- 6.6.1 Importance Sampling (IS).- 6.7 Non-Parametric Signal Modeling.- 6.8 Non-Parametric Estimation.- 6.8.1 Correlogram.- 6.8.2 Periodogram.- 6.9 Filter Bank Method.- 6.10 Quadrature Mirror Filter Bank (QMF).- 6.11 Background Information.- 6.12 Exercises.- 7 Spectral Analysis.- 7.1 Introduction.- 7.2 Adaptive Spectral Analysis.- 7.3 Multivariate Signal Processing.- 7.3.1 Sub-band Coding and Subspace Analysis.- 7.4 Wavelet Analysis.- 7.5 Adaptive Beam Forming.- xii Contents.- 7.6 Independent Component Analysis (ICA).- 7.7 Principal Component Analysis (PCA).- 7.8 Best Basis Algorithms.- 7.9 Background Information.- 7.10 Exercises.- Part II Machine Learning and Recognition.- 8 General Learning.- 8.1 Introduction to Learning.- 8.2 The Learning Phases.- 8.2.1 Search and Utility.- 8.3 Search.- 8.3.1 General Search Model.- 8.3.2 Preference relations.- 8.3.3 Different learning methods.- 8.3.4 Similarities .- 8.3.5 Learning to Recognize.- 8.3.6 Learning again.- 8.4 Background Information.- 8.5 Exercises.- 9 Signal Processes, Learning, and Recognition.- 9.1 Learning.- 9.2Bayesian Formalism.- 9.2.1 Dynamic Bayesian Theory.- 9.2.2 Recognition and Search.- 9.2.3 Influences.- 9.3 Subjectivity.- 9.4 Background Information.- 9.5 Exercises.- 10 Stochastic Processes.- 10.1 Preliminaries on Probabilities.- 10.2 Basic Concepts of Stochastic Processes.- 10.2.1 Markov Processes.- 10.2.2 Hidden Stochastic Models (HSM).- 10.2.3 HSM Topology.- 10.2.4 Learning Probabilities.- 10.2.5 Re-estimation.- 10.2.6 Redundancy.- 10.2.7 Data Preparation.- 10.2.8 Proper Redundancy Removal.- 10.3 Envelope Detection.- 10.3.1 Silence Threshold Selection.- 10.3.2 Pre-emphasis.- Contents xiii.- 10.4 Several Processes.- 10.4.1 Similarity.- 10.4.2 The Local-Global Principle.- 10.4.3 HSM Similarities.- 10.5 Conflict and Support.- 10.6 Examples and Applications.- 10.7 Predictions.- 10.8 Background Information.- 10.9 Exercises.- 11 Feature Extraction.- 11.1 Feature Extractions.- 11.2 Basic Techniques.- 11.2.1 Spectral Shaping.- 11.3 Spectral Analysis and Feature Transformation.- 11.3.1 Parametric Feature Transformations and Cepstrum.- 11.3.2 Standard Feature Extraction Techniques.- 11.3.3 Frame Energy.- 11.4 Linear Prediction Coe_cients (LPC).- 11.5 Linear Prediction Cepstral Coe_cients (LPCC).- 11.6 Adaptive Perceptual Local Trigonometric Transformation.- (APLTT).- 11.7 Search.- 11.7.1 General Search Model.- 11.8 Predictions.- 11.8.1 Purpose.- 11.8.2 Linear Prediction.- 11.8.3 Mean Squared Error Minimization.- 11.8.4 Computation of Probability of an Observation Sequence.- 11.8.5 Forward and Backward Prediction.- 11.8.6 Forward-Backward Prediction.- 11.9 Background Information.- 11.10Exercises.- 12 Unsupervised Learning.- 12.1 Generalities.- 12.2 Clustering Principles.- 12.3 Cluster Analysis Methods.- 12.4 Special Methods.- 12.4.1 K-means.- 12.4.2 Vector Quantization (VQ).- 12.4.3 Expectation Maximization (EM).- 12.4.4 GMM Clustering.- 12.5 Background Information.- 12.6 Exercises.- xiv Contents.- 13 Markov Model and Hidden Stochastic Model.-13.1 Markov Process.- 13.2 Gaussian Mixture Model (GMM).- 13.3 Advantages of using GMM.- 13.4 Linear Prediction Analysis.- 13.4.1 Autocorrelation Method.- 13.4.2 Yule-Walker Approach.- 13.4.3 Covariance Method.- 13.4.4 Comparison of Correlation and Covariance methods.- 13.5 The ULS Approach.- 13.6 Comparison of ULS and Covariance Methods.- 13.7 Forward Prediction.- 13.8 Backward Prediction.- 13.9 Forward-Backward Prediction.- 13.10Baum-Welch Algorithm.- 13.11Viterbi Algorithm.- 13.12Background Information.- 13.13Exercises.- 14 Fuzzy Logic and Rough Sets.- 14.1 Rough Sets.- 14.2 Fuzzy Sets.- 14.2.1 Basis Elements.- 14.2.2 Possibility and Necessity.- 14.3 Fuzzy Clustering.- 14.4 Fuzzy Probabilities.- 14.5 Background Information.- 14.6 Exercises.- 15 Neural Networks.- 15.1 Neural Network Types.- 15.1.1 Neural Network Training.- 15.1.2 Neural Network Topology.- 15.2 Parallel Distributed Processing.- 15.2.1 Forward and Backward Uses.- 15.2.2 Learning.- 15.3 Applications to Signal Processing.- 15.4 Background Information.- 15.5 Exercises.- Part III Real Aspects and Applications.- Contents xv.- 16 Noisy Signals.- 16.1 Introduction.- 16.2 Noise Questions.- 16.3 Sources of Noise.- 16.4 Noise Measurement.- 16.5 Weights and A-Weights.- 16.6 Signal to Noise Ratio (SNR).- 16.7 Noise Measuring Filters and Evaluation.- 16.8 Types of noise.- 16.9 Origin of noises.- 16.10Box Plot Evaluation.- 16.11Individual noise types.- 16.11.1Residual.- 16.11.2Mild.- 16.11.3Steady-unsteady Time varying Noise.- 16.11.4Strong Noise.- 16.12Solution to Strong Noise: Matched Filter.- 16.13Background Information.- 16.14Exercises.- 17 Reasoning Methods and Noise Removal.- 17.1 Generalities.- 17.2 Special Noise Removal Methods.- 17.2.1 Residual Noise.- 17.2.2 Mild Noise.- 17.2.3 Steady-Unsteady Noise.- 17.2.4 Strong Noise.- 17.3 Poisson Distribution.- 17.3.1 Outliers and Shots.- 17.3.2 Underlying probability of Shots.- 17.4 Kalman Filter.- 17.4.1 Prediction Estimates.-17.4.2 White noise Kalman filtering.- 17.4.3 Application of Kalman filter.- 17.5 Classification, Recognition and Learning.- 17.5.1 Summary of the used concepts.- 17.6 Principle Component Analysis (PCA).- 17.7 Reasoning Methods.- 17.7.1 Case-Based Reasoning (CBR).- 17.8 Background Information.- 17.9 Exercises.- xvi Contents.- 18 Audio Signals and Speech Recognition.- 18.1 Generalities of Speech.- 18.2 Categories of Speech Recognition.- 18.3 Automatic Speech Recognition.- 18.3.1 System Structure.- 18.4 Speech Production Model.- 18.5 Acoustics.- 18.6 Human Speech Production.- 18.6.1 The Human Speech Generation.- 18.6.2 Excitation.- 18.6.3 Voiced Speech.- 18.6.4 Unvoiced Speech.- 18.7 Silence Regions.- 18.8 Glottis.- 18.9 Lips.- 18.10Plosive Speech Source.- 18.11Vocal-Tract.- 18.12Parametric and Non-Parametric Models.- 18.13Formants.- 18.14Strong Noise.- 18.15Background Information.- 18.16Exercises.- 19 Noisy Speech.- 19.1 Introduction.- 19.2 Colored Noise.- 19.2.1 Additionaltypes of Colored Noise.- 19.3 Poisson Processes and Shots.- 19.4 Matched Filters.- 19.5 Shot Noise.- 19.6 Background Information.- 19.7 Exercises.- 20 Aspects Of Human Hearing.- 20.1 Human Ear.- 20.2 Human Auditory System.- 20.3 Critical Bands and Scales.- 20.3.1 Mel Scale.- 20.3.2 Bark Scale.- 20.3.3 Erb Scale.- 20.3.4 Greenwood Scale.- 20.4 Filter Banks.- 20.4.1 ICA Network.- 20.4.2 Auditory Filter Banks.- 20.4.3 Filter Banks.- Contents xvii.- 20.4.4 Mel Critical Filter Bank.- 20.5 Psycho-acoustic Phenomena.- 20.5.1 Perceptual Measurement.- 20.5.2 Human Hearing and Perception.- 20.5.3 Sound Pressure Level (SPL).- 20.5.4 Absolute Threshold of Hearing (ATH).- 20.6 Perceptual Adaptation.- 20.7 Auditory System and Hearing Model.- 20.8 Auditory Masking and Masking Frequency.- 20.9 Perceptual Spectral Features.- 20.10Critical Band Analysis.- 20.11Equal Loudness Pre-emphasis.- 20.12Perceptual Transformation.- 20.13Feature Transformation.- 20.14Filters and Human Ear.- 20.15Temporal Aspects.- 20.16Background Information.- 20.17Exercises.- 21 Speech Features.- 21.1 Generalities.- 21.2 Cost Functions.- 21.3 Special Feature Extractions.- 21.3.1 MFCC Features.- 21.3.2 Feature Transformation applying DCT.- 21.4 Background Information.- 21.5 Exercises.- 22 Hidden Stochastic Model for Speech.- 22.1 General.- 22.2 Hidden Stochastic Model.- 22.3 Forward and Backward Predictions.- 22.3.1 Forward Algorithm.- 22.3.2 Backward Algorithm.- 22.4 Forward-Backward Prediction.- 22.5 Burg Approach.- 22.6 Graph Search.- 22.6.1 Recognition Model with Search.- 22.7 Semantic Issues and Industrial Applications.- 22.8 Problems with Noise.- 22.9 Aspects of Music.- 22.10Music reception.- 22.11Background Information.- 22.12Exercises.- xviii Contents.- 23 Different Speech Applications – Part A.- 23.1 Generalities.- 23.2 Example Applications.- 23.2.1 Experimental laboratory.- 23.2.2 Health care support (everyday actions).- 23.2.3 Diagnostic support for persons with possible dementia.- 23.2.4 Noise.- 23.3 Background Information.- 23.4 Exercises.- 24 Different Speech Applications – Part B.- 24.1 Introduction.- 24.2 Discrete-Time Signals.- 24.3 Speech Processing.- 24.3.1 Framing.- 24.3.2 Pre-emphasis.- 24.3.3 Windowing.- 24.3.4 Fourier Transform.- 24.3.5 Mel-Filtering.- 24.3.6 Mel-Frequency Cepstral Coeffcients.- 24.4 Speech Analysis and Sound Effects Laboratory (SASE_Lab).- 24.5 Wake-Up-Word Speech Recognition.- 24.5.1 Introduction.- 24.5.2 Wake-up-Word Paradigm.- 24.5.3 Wake-Up-Word: Definition.- 24.5.4 Wake-Up-Word System.- 24.5.5 Front-End of the Wake-Up-Word System.- 24.6 Conclusion.- 24.6.1 Wake-Up-Word: Tool Demo.- 24.6.2 Elevator Simulator.- 24.7 Background Information.- 24.8 Exercises.- 24.9 Speech Analysis and Sound E_ects Laboratory (SASE_Lab)" .- 25 Biomedical Signals: ECG, EEG.- 25.1 ECG signals.- 25.1.1 Bioelectric Signals.- 25.1.2 Noise.- 25.2 EEG Signals.- 25.2.1 General properties.- 25.2.2 Signal types and properties.- 25.2.3 Disadvantages.- 25.3 Neural Network use.- 25.4 Major Research Questions.- 25.5 Background Information.- Contents xix.- 25.6 Exercises.- 26 Seismic Signals.- 26.1 Generalities.- 26.2 Sources of seismic signals.- 26.3 Intermediate elements.- 26.4 Practical Data Sources.- 26.5 Major seismic problems.- 26.6 Noise.- 26.7 Background Information.- 26.8 Exercises.- 27 Radar Signals.- 27.1 Introduction.- 27.2 Radar Types and Applications.- 27.3 Doppler Equations, Ambiguity Function(AF) and Matched.- Filter.- 27.4 Moving Target Detection.- 27.5 Applications and Discussions.- 27.6 Examples.- 27.7 Background Information.- 27.8 Exercises.- 28 Visual Story Telling.- 28.1 Introduction.- 28.1.1 Common Visualization Approaches.- 28.2 Analytics and Visualization.- 28.2.1 Visualization.- 28.2.2 Visual Data Minin.- 28.3 Communication and Visualization.- 28.4 Background Information.- 28.5 Exercises.- 29 Digital Processes and Multimedia.- 29.1 Images.- 29.1.1 DigitalImage Processing.- 29.1.2 Images as Matrices.- 29.1.3 Gray Scale Images.- 29.2 Spatial Filtering.- 29.2.1 Linear Filtering of Images.- 29.2.2 Separable Filters.- 29.2.3 Mechanics of Linear Spatial Filtering Operation.- 29.3 Median Filtering.- 29.4 Color Equalization.- 29.4.1 Image Transformations.- 29.4.2 Examples of Image Transformation Matrixes.- xx Contents.- 29.5 Basic Image Statistics.- 29.6 Abstraction Levels of Images and its Representations.- 29.6.1 Lowest Level.- 29.6.2 Geometric Level.- 29.6.3 Domain Level.- 29.6.4 Segmentation.- 29.7 Background Information.- 29.8 Exercises.- 30 Visualizations of Emergency Operation Centre.- 30.1 Introduction.- 30.2 Communications in Emergency Situations.- 30.3 Emergency Scenario.- 30.3.1 Classification and EOC Scenario.- 30.4 Technical Aspects and Techniques.- 30.4.1 Classification.- 30.4.2 Clustering.- 30.5 Background Information.- 30.6 Exercises.- 31 Intelligent Interactive Communications.- 31.1 Introduction.- 31.2 Spoken Dialogue System.- 31.3 Gesture based Interaction.- 31.4 Object Recognition and Identification.- 31.5 Visual Story Telling.- 31.6 Virtual Environment for Personal Assistance.- 31.7 Sensor Fusion.- 31.8 Intelligent Human Machine for Communication.- Application Scenario.- 31.9 Background Information.- 31.10Exercises.- 32 Comparisons.- 32.1 Generalities.- 32.1.1 EEG and ECG.- 32.1.2 Speech and biomedical applications.- 32.1.3 Seismic and biomedical signals.- 32.1.4 Speech and Images.- 32.2 Overall.- 32.3 Background Information.- 32.3.1 General.- 32.4 Exercises.- Glossary.

About the Author

Professor Michael M. Richter taught at the University of Texas at Austin and at RWTH Aachen, in addition to numerous visiting professorships.  He is one of the founding scientific director of the DFKI (German Research Center for Artificial Intelligence). He taught, researched, and published extensively in the areas of mathematical logic and artificial intelligence. Professor Richter was one of the pioneers of case-based reasoning: he founded the leading European event on the subject, he led many of the key academic research projects, and demonstrated the real-world viability of the approach with successful commercial products. Michael Richter passed away during the final publishing phase of this book.

Dr. Sheuli Paul is a scientist in Defence Research and Development Canada, engaged in  applied research in the areas of signal processing, machine learning, artificial intelligence and  human-robot interaction.   Trying to solve complex problems in interdisciplinary areas is her passion.

Dr. Veton  Këpuska  is an  inventor of  Wake-Up-Word Speech Recognition, a method of communication with machines for which he was granted two patents. He joined Florida Institute of Technology (FIT) in 2003 and engaged in numerous research activities in speech and image processing, digital processes, and machine learning. Dr. Këpuska won the First Annual Digital Signal Processing Design competition by applying his Wake-up-Word on embedded Analog Devices Platform. Dr. Këpuska won numerous awards including “the Kerry Bruce Clark” award for teaching excellence and received numerous best paper awards.

Prof. Marius Silaghi has taught, researched, and published in the areas of artificial intelligence and networking. Professor Silaghi is involved in human-machine interaction research and proposed techniques for motion capture, speech recognition, and robotics. He founded the conference on Distributed Constraint Optimization and gave multiple tutorials on the topic at the main artificial intelligence conferences. He received numerous best paper awards.

 

Show more
Review this Product
Ask a Question About this Product More...
 
Item ships from and is sold by Fishpond World Ltd.

Back to top