Explore how Delta brings reliability, performance, and governance to your data lake and all the AI and BI use cases built on top of it
Key FeaturesDelta helps you generate reliable insights at scale and simplifies architecture around data pipelines, allowing you to focus primarily on refining the use cases being worked on. This is especially important when you consider that existing architecture is frequently reused for new use cases.
In this book, you'll learn about the principles of distributed computing, data modeling techniques, and big data design patterns and templates that help solve end-to-end data flow problems for common scenarios and are reusable across use cases and industry verticals. You'll also learn how to recover from errors and the best practices around handling structured, semi-structured, and unstructured data using Delta. After that, you'll get to grips with features such as ACID transactions on big data, disciplined schema evolution, time travel to help rewind a dataset to a different time or version, and unified batch and streaming capabilities that will help you build agile and robust data products.
By the end of this Delta book, you'll be able to use Delta as the foundational block for creating analytics-ready data that fuels all AI/BI use cases.
What you will learnData engineers, data scientists, ML practitioners, BI analysts, or anyone in the data domain working with big data will be able to put their knowledge to work with this practical guide to executing pipelines and supporting diverse use cases using the Delta protocol. Basic knowledge of SQL, Python programming, and Spark is required to get the most out of this book.
Show moreExplore how Delta brings reliability, performance, and governance to your data lake and all the AI and BI use cases built on top of it
Key FeaturesDelta helps you generate reliable insights at scale and simplifies architecture around data pipelines, allowing you to focus primarily on refining the use cases being worked on. This is especially important when you consider that existing architecture is frequently reused for new use cases.
In this book, you'll learn about the principles of distributed computing, data modeling techniques, and big data design patterns and templates that help solve end-to-end data flow problems for common scenarios and are reusable across use cases and industry verticals. You'll also learn how to recover from errors and the best practices around handling structured, semi-structured, and unstructured data using Delta. After that, you'll get to grips with features such as ACID transactions on big data, disciplined schema evolution, time travel to help rewind a dataset to a different time or version, and unified batch and streaming capabilities that will help you build agile and robust data products.
By the end of this Delta book, you'll be able to use Delta as the foundational block for creating analytics-ready data that fuels all AI/BI use cases.
What you will learnData engineers, data scientists, ML practitioners, BI analysts, or anyone in the data domain working with big data will be able to put their knowledge to work with this practical guide to executing pipelines and supporting diverse use cases using the Delta protocol. Basic knowledge of SQL, Python programming, and Spark is required to get the most out of this book.
Show moreTable of Contents
Anindita Mahapatra is a Solutions Architect at Databricks in the
data and AI space helping clients across all industry verticals
reap value from their data infrastructure investments.
She teaches a data engineering and analytics course at Harvard
University as part of their extension school program.
She has extensive big data and Hadoop consulting experience from
Thinkbig/Teradata prior to which she was managing development of
algorithmic app discovery and promotion for both Nokia and
Microsoft AppStores.
She holds a Masters degree in Liberal Arts and Management from
Harvard Extension School, a Masters in Computer Science from Boston
University and a Bachelors in Computer Science from BITS Pilani,
India.
![]() |
Ask a Question About this Product More... |
![]() |