Warehouse Stock Clearance Sale

Grab a bargain today!


Sign Up for Fishpond's Best Deals Delivered to You Every Day
Go
Tutorials in ­Chemoinformatics
By Alexandre Varnek (Edited by)

Rating
Format
Hardback, 496 pages
Published
United States, 1 August 2017

List of Contributors xv Preface xvii About the Companion Website xix Part 1 Chemical Databases 1 1 Data Curation 3 Gilles Marcou and Alexandre Varnek Theoretical Background 3 Software 5 Step?]by?]Step Instructions 7 Conclusion 34 References 36 2 Relational Chemical Databases: Creation, Management, and Usage 37 Gilles Marcou and Alexandre Varnek Theoretical Background 37 Step?]by?]Step Instructions 41 Conclusion 65 References 65 3 Handling of Markush Structures 67 Timur Madzhidov, Ramil Nugmanov, and Alexandre Varnek Theoretical Background 67 Step?]by?]Step Instructions 68 Conclusion 73 References 73 4 Processing of SMILES, InChI, and Hashed Fingerprints 75 João Montargil Aires de Sousa Theoretical Background 75 Algorithms 76 Step?]by?]Step Instructions 78 Conclusion 80 References 81 Part 2 Library Design 83 5 Design of Diverse and Focused Compound Libraries 85 Antonio de la Vega de Leon, Eugen Lounkine, Martin Vogt, and Jürgen Bajorath Introduction 85 Data Acquisition 86 Implementation 86 Compound Library Creation 87 Compound Library Analysis 90 Normalization of Descriptor Values 91 Visualizing Descriptor Distributions 92 Decorrelation and Dimension Reduction 94 Partitioning and Diverse Subset Calculation 95 Partitioning 95 Diverse Subset Selection 97 Combinatorial Libraries 98 Combinatorial Enumeration of Compounds 98 Retrosynthetic Approaches to Library Design 99 References 101 Part 3 Data Analysis and Visualization 103 6 Hierarchical Clustering in R 105 Martin Vogt and Jürgen Bajorath Theoretical Background 105 Algorithms 106 Instructions 107 Hierarchical Clustering Using Fingerprints 108 Hierarchical Clustering Using Descriptors 111 Visualization of the Data Sets 113 Alternative Clustering Methods 116 Conclusion 117 References 118 7 Data Visualization and Analysis Using Kohonen Self?]Organizing Maps 119 João Montargil Aires de Sousa Theoretical Background 119 Algorithms 120 Instructions 121 Conclusion 126 References 126 Part 4 Obtaining and Validation QSAR/QSPR Models 127 8 Descriptors Generation Using the CDK Toolkit and Web Services 129 João Montargil Aires de Sousa Theoretical Background 129 Algorithms 130 Step?]by?]Step Instructions 131 Conclusion 133 References 134 9 QSPR Models on Fragment Descriptors 135 Vitaly Solov'ev and Alexandre Varnek Abbreviations 135 DATA 136 ISIDA_QSPR Input 137 Data Split Into Training and Test Sets 139 Substructure Molecular Fragment (SMF) Descriptors 139 Regression Equations 142 Forward and Backward Stepwise Variable Selection 142 Parameters of Internal Model Validation 143 Applicability Domain (AD) of the Model 143 Storage and Retrieval Modeling Results 144 Analysis of Modeling Results 144 Root?]Mean Squared Error (RMSE) Estimation 148 Setting the Parameters 151 Analysis of n?]Fold Cross?]Validation Results 151 Loading Structure?]Data File 153 Descriptors and Fitting Equation 154 Variables Selection 155 Consensus Model 155 Model Applicability Domain 155 n?]Fold External Cross?]Validation 155 Saving and Loading of the Consensus Modeling Results 155 Statistical Parameters of the Consensus Model 156 Consensus Model Performance as a Function of Individual Models Acceptance Threshold 157 Building Consensus Model on the Entire Data Set 158 Loading Input Data 159 Loading Selected Models and Choosing their Applicability Domain 160 Reporting Predicted Values 160 Analysis of the Fragments Contributions 161 References 161 10 Cross?]Validation and the Variable Selection Bias 163 Igor I. Baskin, Gilles Marcou, Dragos Horvath, and Alexandre Varnek Theoretical Background 163 Step?]by?]Step Instructions 165 Conclusion 172 References 173 11 Classification Models 175 Igor I. Baskin, Gilles Marcou, Dragos Horvath, and Alexandre Varnek Theoretical Background 176 Algorithms 178 Step?]by?]Step Instructions 180 Conclusion 191 References 192 12 Regression Models 193 Igor I. Baskin, Gilles Marcou, Dragos Horvath, and Alexandre Varnek Theoretical Background 194 Step?]by?]Step Instructions 197 Conclusion 207 References 208 13 Benchmarking Machine?]Learning Methods 209 Igor I. Baskin, Gilles Marcou, Dragos Horvath, and Alexandre Varnek Theoretical Background 209 Step?]by?]Step Instructions 210 Conclusion 222 References 222 14 Compound Classification Using the scikit?]learn Library 223 Jenny Balfer, Jürgen Bajorath, and Martin Vogt Theoretical Background 224 Algorithms 225 Step?]by?]Step Instructions 230 Naïve Bayes 230 Decision Tree 231 Support Vector Machine 234 Notes on Provided Code 237 Conclusion 238 References 239 Part 5 Ensemble Modeling 241 15 Bagging and Boosting of Classification Models 243 Igor I. Baskin, Gilles Marcou, Dragos Horvath, and Alexandre Varnek Theoretical Background 243 Algorithm 244 Step by Step Instructions 245 Conclusion 247 References 247 16 Bagging and Boosting of Regression Models 249 Igor I. Baskin, Gilles Marcou, Dragos Horvath, and Alexandre Varnek Theoretical Background 249 Algorithm 249 Step?]by?]Step Instructions 250 Conclusion 255 References 255 17 Instability of Interpretable Rules 257 Igor I. Baskin, Gilles Marcou, Dragos Horvath, and Alexandre Varnek Theoretical Background 257 Algorithm 258 Step?]by?]Step Instructions 258 Conclusion 261 References 261 18 Random Subspaces and Random Forest 263 Igor I. Baskin, Gilles Marcou, Dragos Horvath, and Alexandre Varnek Theoretical Background 264 Algorithm 264 Step?]by?]Step Instructions 265 Conclusion 269 References 269 19 Stacking 271 Igor I. Baskin, Gilles Marcou, Dragos Horvath, and Alexandre Varnek Theoretical Background 271 Algorithm 272 Step?]by?]Step Instructions 273 Conclusion 277 References 278 Part 6 3D Pharmacophore Modeling 279 20 3D Pharmacophore Modeling Techniques in Computer?]Aided Molecular Design Using LigandScout 281 Thomas Seidel, Sharon D. Bryant, Gökhan Ibis, Giulio Poli, and Thierry Langer Introduction 281 Theory: 3D Pharmacophores 283 Representation of Pharmacophore Models 283 Hydrogen?]Bonding Interactions 285 Hydrophobic Interactions 285 Aromatic and Cation?]pi Interactions 286 Ionic Interactions 286 Metal Complexation 286 Ligand Shape Constraints 287 Pharmacophore Modeling 288 Manual Pharmacophore Construction 288 Structure?]Based Pharmacophore Models 289 Ligand?]Based Pharmacophore Models 289 3D Pharmacophore?]Based Virtual Screening 291 3D Pharmacophore Creation 291 Annotated Database Creation 291 Virtual Screening?]Database Searching 292 Hit?]List Analysis 292 Tutorial: Creating 3D?]Pharmacophore Models Using LigandScout 294 Creating Structure?]Based Pharmacophores From a Ligand?]Protein Complex 294 Description: Create a Structure?]Based Pharmacophore Model 296 Create a Shared Feature Pharmacophore Model From Multiple Ligand?]Protein Complexes 296 Description: Create a Shared Feature Pharmacophore and Align it to Ligands 297 Create Ligand?]Based Pharmacophore Models 298 Description: Ligand?]Based Pharmacophore Model Creation 300 Tutorial: Pharmacophore?]Based Virtual Screening Using LigandScout 301 Virtual Screening, Model Editing, and Viewing Hits in the Target Active Site 301 Description: Virtual Screening and Pharmacophore Model Editing 302 Analyzing Screening Results with Respect to the Binding Site 303 Description: Analyzing Hits in the Active Site Using LigandScout 305 Parallel Virtual Screening of Multiple Databases Using LigandScout 305 Virtual Screening in the Screening Perspective of LigandScout 306 Description: Virtual Screening Using LigandScout 306 Conclusions 307 Acknowledgments 307 References 307 Part 7 The Protein 3D?]Structures in Virtual Screening 311 21 The Protein 3D?]Structures in Virtual Screening 313 Inna Slynko and Esther Kellenberger Introduction 313 Description of the Example Case 314 Thrombin and Blood Coagulation 314 Active Thrombin and Inactive Prothrombin 314 Thrombin as a Drug Target 314 Thrombin Three?]Dimensional Structure: The 1OYT PDB File 315 Modeling Suite 315 Overall Description of the Input Data Available on the Editor Website 315 Exercise 1: Protein Analysis and Preparation 316 Step 1: Identification of Molecules Described in the 1OYT PDB File 316 Step 2: Protein Quality Analysis of the Thrombin/Inhibitor PDB Complex Using MOE Geometry Utility 320 Step 3: Preparation of the Protein for Drug Design Applications 321 Step 4: Description of the Protein?]Ligand Binding Mode 325 Step 5: Detection of Protein Cavities 328 Exercise 2: Retrospective Virtual Screening Using the Pharmacophore Approach 330 Step 1: Description of the Test Library 332 Step 2.1: Pharmacophore Design, Overview 333 Step 2.2: Pharmacophore Design, Flexible Alignment of Three Thrombin Inhibitors 334 Step 2.3: Pharmacophore Design, Query Generation 335 Step 3: Pharmacophore Search 337 Exercise 3: Retrospective Virtual Screening Using the Docking Approach 341 Step 1: Description of the Test Library 341 Step 2: Preparation of the Input 341 Step 3: Re?]Docking of the Crystallographic Ligand 341 Step 4: Virtual Screening of a Database 345 General Conclusion 350 References 351 Part 8 Protein?]Ligand Docking 353 22 Protein?]Ligand Docking 355 Inna Slynko, Didier Rognan, and Esther Kellenberger Introduction 355 Description of the Example Case 356 Methods 356 Ligand Preparation 359 Protein Preparation 359 Docking Parameters 360 Description of Input Data Available on the Editor Website 360 Exercises 362 A Quick Start with LeadIT 362 Re?]Docking of Tacrine into AChE 362 Preparation of AChE From 1ACJ PDB File 362 Docking of Neutral Tacrine, then of Positively Charged Tacrine 363 Docking of Positively Charged Tacrine in AChE in Presence of Water 365 Cross?]Docking of Tacrine?]Pyridone and Donepezil Into AChE 366 Preparation of AChE From 1ACJ PDB File 366 Cross?]Docking of Tacrine?]Pyridone Inhibitor and Donepezil in AChE in Presence of Water 367 Re?]Docking of Donepezil in AChE in Presence of Water 370 General Conclusions 372 Annex: Screen Captures of LeadIT Graphical Interface 372 References 375 Part 9 Pharmacophorical Profiling Using Shape Analysis 377 23 Pharmacophorical Profiling Using Shape Analysis 379 Jérémy Desaphy, Guillaume Bret, Inna Slynko, Didier Rognan, and Esther Kellenberger Introduction 379 Description of the Example Case 380 Aim and Context 380 Description of the Searched Data Set 381 Description of the Query 381 Methods 381 ROCS 381 VolSite and Shaper 384 Other Programs for Shape Comparison 384 Description of Input Data Available on the Editor Website 385 Exercises 387 Preamble: Practical Considerations 387 Ligand Shape Analysis 387 What are ROCS Output Files? 387 Binding Site Comparison 388 Conclusions 390 References 391 Part 10 Algorithmic Chemoinformatics 393 24 Algorithmic Chemoinformatics 395 Martin Vogt, Antonio de la Vega de Leon, and Jürgen Bajorath Introduction 395 Similarity Searching Using Data Fusion Techniques 396 Introduction to Virtual Screening 396 The Three Pillars of Virtual Screening 397 Molecular Representation 397 Similarity Function 397 Search Strategy (Data Fusion) 397 Fingerprints 397 Count Fingerprints 397 Fingerprint Representations 399 Bit Strings 399 Feature Lists 399 Generation of Fingerprints 399 Similarity Metrics 402 Search Strategy 404 Completed Virtual Screening Program 405 Benchmarking VS Performance 406 Scoring the Scorers 407 How to Score 407 Multiple Runs and Reproducibility 408 Adjusting the VS Program for Benchmarking 408 Analyzing Benchmark Results 410 Conclusion 414 Introduction to Chemoinformatics Toolkits 415 Theoretical Background 415 A Note on Graph Theory 416 Basic Usage: Creating and Manipulating Molecules in RDKit 417 Creation of Molecule Objects 417 Molecule Methods 418 Atom Methods 418 Bond Methods 419 An Example: Hill Notation for Molecules 419 Canonical SMILES: The Canon Algorithm 420 Theoretical Background 420 Recap of SMILES Notation 420 Canonical SMILES 421 Building a SMILES String 422 Canonicalization of SMILES 425 The Initial Invariant 427 The Iteration Step 428 Summary 431 Substructure Searching: The Ullmann Algorithm 432 Theoretical Background 432 Backtracking 433 A Note on Atom Order 436 The Ullmann Algorithm 436 Sample Runs 440 Summary 441 Atom Environment Fingerprints 441 Theoretical Background 441 Implementation 443 The Hashing Function 443 The Initial Atom Invariant 444 The Algorithm 444 Summary 447 References 447 Index 449

Show more

Our Price
HK$876
Ships from UK Estimated delivery date: 29th Apr - 6th May from UK
Free Shipping Worldwide

Buy Together
+
Buy together with A Russian Nurse in War and Revolution at a great price!
Buy Together
HK$993
Elsewhere Price
HK$1,040.54
You Save HK$47.54 (5%)

Product Description

List of Contributors xv Preface xvii About the Companion Website xix Part 1 Chemical Databases 1 1 Data Curation 3 Gilles Marcou and Alexandre Varnek Theoretical Background 3 Software 5 Step?]by?]Step Instructions 7 Conclusion 34 References 36 2 Relational Chemical Databases: Creation, Management, and Usage 37 Gilles Marcou and Alexandre Varnek Theoretical Background 37 Step?]by?]Step Instructions 41 Conclusion 65 References 65 3 Handling of Markush Structures 67 Timur Madzhidov, Ramil Nugmanov, and Alexandre Varnek Theoretical Background 67 Step?]by?]Step Instructions 68 Conclusion 73 References 73 4 Processing of SMILES, InChI, and Hashed Fingerprints 75 João Montargil Aires de Sousa Theoretical Background 75 Algorithms 76 Step?]by?]Step Instructions 78 Conclusion 80 References 81 Part 2 Library Design 83 5 Design of Diverse and Focused Compound Libraries 85 Antonio de la Vega de Leon, Eugen Lounkine, Martin Vogt, and Jürgen Bajorath Introduction 85 Data Acquisition 86 Implementation 86 Compound Library Creation 87 Compound Library Analysis 90 Normalization of Descriptor Values 91 Visualizing Descriptor Distributions 92 Decorrelation and Dimension Reduction 94 Partitioning and Diverse Subset Calculation 95 Partitioning 95 Diverse Subset Selection 97 Combinatorial Libraries 98 Combinatorial Enumeration of Compounds 98 Retrosynthetic Approaches to Library Design 99 References 101 Part 3 Data Analysis and Visualization 103 6 Hierarchical Clustering in R 105 Martin Vogt and Jürgen Bajorath Theoretical Background 105 Algorithms 106 Instructions 107 Hierarchical Clustering Using Fingerprints 108 Hierarchical Clustering Using Descriptors 111 Visualization of the Data Sets 113 Alternative Clustering Methods 116 Conclusion 117 References 118 7 Data Visualization and Analysis Using Kohonen Self?]Organizing Maps 119 João Montargil Aires de Sousa Theoretical Background 119 Algorithms 120 Instructions 121 Conclusion 126 References 126 Part 4 Obtaining and Validation QSAR/QSPR Models 127 8 Descriptors Generation Using the CDK Toolkit and Web Services 129 João Montargil Aires de Sousa Theoretical Background 129 Algorithms 130 Step?]by?]Step Instructions 131 Conclusion 133 References 134 9 QSPR Models on Fragment Descriptors 135 Vitaly Solov'ev and Alexandre Varnek Abbreviations 135 DATA 136 ISIDA_QSPR Input 137 Data Split Into Training and Test Sets 139 Substructure Molecular Fragment (SMF) Descriptors 139 Regression Equations 142 Forward and Backward Stepwise Variable Selection 142 Parameters of Internal Model Validation 143 Applicability Domain (AD) of the Model 143 Storage and Retrieval Modeling Results 144 Analysis of Modeling Results 144 Root?]Mean Squared Error (RMSE) Estimation 148 Setting the Parameters 151 Analysis of n?]Fold Cross?]Validation Results 151 Loading Structure?]Data File 153 Descriptors and Fitting Equation 154 Variables Selection 155 Consensus Model 155 Model Applicability Domain 155 n?]Fold External Cross?]Validation 155 Saving and Loading of the Consensus Modeling Results 155 Statistical Parameters of the Consensus Model 156 Consensus Model Performance as a Function of Individual Models Acceptance Threshold 157 Building Consensus Model on the Entire Data Set 158 Loading Input Data 159 Loading Selected Models and Choosing their Applicability Domain 160 Reporting Predicted Values 160 Analysis of the Fragments Contributions 161 References 161 10 Cross?]Validation and the Variable Selection Bias 163 Igor I. Baskin, Gilles Marcou, Dragos Horvath, and Alexandre Varnek Theoretical Background 163 Step?]by?]Step Instructions 165 Conclusion 172 References 173 11 Classification Models 175 Igor I. Baskin, Gilles Marcou, Dragos Horvath, and Alexandre Varnek Theoretical Background 176 Algorithms 178 Step?]by?]Step Instructions 180 Conclusion 191 References 192 12 Regression Models 193 Igor I. Baskin, Gilles Marcou, Dragos Horvath, and Alexandre Varnek Theoretical Background 194 Step?]by?]Step Instructions 197 Conclusion 207 References 208 13 Benchmarking Machine?]Learning Methods 209 Igor I. Baskin, Gilles Marcou, Dragos Horvath, and Alexandre Varnek Theoretical Background 209 Step?]by?]Step Instructions 210 Conclusion 222 References 222 14 Compound Classification Using the scikit?]learn Library 223 Jenny Balfer, Jürgen Bajorath, and Martin Vogt Theoretical Background 224 Algorithms 225 Step?]by?]Step Instructions 230 Naïve Bayes 230 Decision Tree 231 Support Vector Machine 234 Notes on Provided Code 237 Conclusion 238 References 239 Part 5 Ensemble Modeling 241 15 Bagging and Boosting of Classification Models 243 Igor I. Baskin, Gilles Marcou, Dragos Horvath, and Alexandre Varnek Theoretical Background 243 Algorithm 244 Step by Step Instructions 245 Conclusion 247 References 247 16 Bagging and Boosting of Regression Models 249 Igor I. Baskin, Gilles Marcou, Dragos Horvath, and Alexandre Varnek Theoretical Background 249 Algorithm 249 Step?]by?]Step Instructions 250 Conclusion 255 References 255 17 Instability of Interpretable Rules 257 Igor I. Baskin, Gilles Marcou, Dragos Horvath, and Alexandre Varnek Theoretical Background 257 Algorithm 258 Step?]by?]Step Instructions 258 Conclusion 261 References 261 18 Random Subspaces and Random Forest 263 Igor I. Baskin, Gilles Marcou, Dragos Horvath, and Alexandre Varnek Theoretical Background 264 Algorithm 264 Step?]by?]Step Instructions 265 Conclusion 269 References 269 19 Stacking 271 Igor I. Baskin, Gilles Marcou, Dragos Horvath, and Alexandre Varnek Theoretical Background 271 Algorithm 272 Step?]by?]Step Instructions 273 Conclusion 277 References 278 Part 6 3D Pharmacophore Modeling 279 20 3D Pharmacophore Modeling Techniques in Computer?]Aided Molecular Design Using LigandScout 281 Thomas Seidel, Sharon D. Bryant, Gökhan Ibis, Giulio Poli, and Thierry Langer Introduction 281 Theory: 3D Pharmacophores 283 Representation of Pharmacophore Models 283 Hydrogen?]Bonding Interactions 285 Hydrophobic Interactions 285 Aromatic and Cation?]pi Interactions 286 Ionic Interactions 286 Metal Complexation 286 Ligand Shape Constraints 287 Pharmacophore Modeling 288 Manual Pharmacophore Construction 288 Structure?]Based Pharmacophore Models 289 Ligand?]Based Pharmacophore Models 289 3D Pharmacophore?]Based Virtual Screening 291 3D Pharmacophore Creation 291 Annotated Database Creation 291 Virtual Screening?]Database Searching 292 Hit?]List Analysis 292 Tutorial: Creating 3D?]Pharmacophore Models Using LigandScout 294 Creating Structure?]Based Pharmacophores From a Ligand?]Protein Complex 294 Description: Create a Structure?]Based Pharmacophore Model 296 Create a Shared Feature Pharmacophore Model From Multiple Ligand?]Protein Complexes 296 Description: Create a Shared Feature Pharmacophore and Align it to Ligands 297 Create Ligand?]Based Pharmacophore Models 298 Description: Ligand?]Based Pharmacophore Model Creation 300 Tutorial: Pharmacophore?]Based Virtual Screening Using LigandScout 301 Virtual Screening, Model Editing, and Viewing Hits in the Target Active Site 301 Description: Virtual Screening and Pharmacophore Model Editing 302 Analyzing Screening Results with Respect to the Binding Site 303 Description: Analyzing Hits in the Active Site Using LigandScout 305 Parallel Virtual Screening of Multiple Databases Using LigandScout 305 Virtual Screening in the Screening Perspective of LigandScout 306 Description: Virtual Screening Using LigandScout 306 Conclusions 307 Acknowledgments 307 References 307 Part 7 The Protein 3D?]Structures in Virtual Screening 311 21 The Protein 3D?]Structures in Virtual Screening 313 Inna Slynko and Esther Kellenberger Introduction 313 Description of the Example Case 314 Thrombin and Blood Coagulation 314 Active Thrombin and Inactive Prothrombin 314 Thrombin as a Drug Target 314 Thrombin Three?]Dimensional Structure: The 1OYT PDB File 315 Modeling Suite 315 Overall Description of the Input Data Available on the Editor Website 315 Exercise 1: Protein Analysis and Preparation 316 Step 1: Identification of Molecules Described in the 1OYT PDB File 316 Step 2: Protein Quality Analysis of the Thrombin/Inhibitor PDB Complex Using MOE Geometry Utility 320 Step 3: Preparation of the Protein for Drug Design Applications 321 Step 4: Description of the Protein?]Ligand Binding Mode 325 Step 5: Detection of Protein Cavities 328 Exercise 2: Retrospective Virtual Screening Using the Pharmacophore Approach 330 Step 1: Description of the Test Library 332 Step 2.1: Pharmacophore Design, Overview 333 Step 2.2: Pharmacophore Design, Flexible Alignment of Three Thrombin Inhibitors 334 Step 2.3: Pharmacophore Design, Query Generation 335 Step 3: Pharmacophore Search 337 Exercise 3: Retrospective Virtual Screening Using the Docking Approach 341 Step 1: Description of the Test Library 341 Step 2: Preparation of the Input 341 Step 3: Re?]Docking of the Crystallographic Ligand 341 Step 4: Virtual Screening of a Database 345 General Conclusion 350 References 351 Part 8 Protein?]Ligand Docking 353 22 Protein?]Ligand Docking 355 Inna Slynko, Didier Rognan, and Esther Kellenberger Introduction 355 Description of the Example Case 356 Methods 356 Ligand Preparation 359 Protein Preparation 359 Docking Parameters 360 Description of Input Data Available on the Editor Website 360 Exercises 362 A Quick Start with LeadIT 362 Re?]Docking of Tacrine into AChE 362 Preparation of AChE From 1ACJ PDB File 362 Docking of Neutral Tacrine, then of Positively Charged Tacrine 363 Docking of Positively Charged Tacrine in AChE in Presence of Water 365 Cross?]Docking of Tacrine?]Pyridone and Donepezil Into AChE 366 Preparation of AChE From 1ACJ PDB File 366 Cross?]Docking of Tacrine?]Pyridone Inhibitor and Donepezil in AChE in Presence of Water 367 Re?]Docking of Donepezil in AChE in Presence of Water 370 General Conclusions 372 Annex: Screen Captures of LeadIT Graphical Interface 372 References 375 Part 9 Pharmacophorical Profiling Using Shape Analysis 377 23 Pharmacophorical Profiling Using Shape Analysis 379 Jérémy Desaphy, Guillaume Bret, Inna Slynko, Didier Rognan, and Esther Kellenberger Introduction 379 Description of the Example Case 380 Aim and Context 380 Description of the Searched Data Set 381 Description of the Query 381 Methods 381 ROCS 381 VolSite and Shaper 384 Other Programs for Shape Comparison 384 Description of Input Data Available on the Editor Website 385 Exercises 387 Preamble: Practical Considerations 387 Ligand Shape Analysis 387 What are ROCS Output Files? 387 Binding Site Comparison 388 Conclusions 390 References 391 Part 10 Algorithmic Chemoinformatics 393 24 Algorithmic Chemoinformatics 395 Martin Vogt, Antonio de la Vega de Leon, and Jürgen Bajorath Introduction 395 Similarity Searching Using Data Fusion Techniques 396 Introduction to Virtual Screening 396 The Three Pillars of Virtual Screening 397 Molecular Representation 397 Similarity Function 397 Search Strategy (Data Fusion) 397 Fingerprints 397 Count Fingerprints 397 Fingerprint Representations 399 Bit Strings 399 Feature Lists 399 Generation of Fingerprints 399 Similarity Metrics 402 Search Strategy 404 Completed Virtual Screening Program 405 Benchmarking VS Performance 406 Scoring the Scorers 407 How to Score 407 Multiple Runs and Reproducibility 408 Adjusting the VS Program for Benchmarking 408 Analyzing Benchmark Results 410 Conclusion 414 Introduction to Chemoinformatics Toolkits 415 Theoretical Background 415 A Note on Graph Theory 416 Basic Usage: Creating and Manipulating Molecules in RDKit 417 Creation of Molecule Objects 417 Molecule Methods 418 Atom Methods 418 Bond Methods 419 An Example: Hill Notation for Molecules 419 Canonical SMILES: The Canon Algorithm 420 Theoretical Background 420 Recap of SMILES Notation 420 Canonical SMILES 421 Building a SMILES String 422 Canonicalization of SMILES 425 The Initial Invariant 427 The Iteration Step 428 Summary 431 Substructure Searching: The Ullmann Algorithm 432 Theoretical Background 432 Backtracking 433 A Note on Atom Order 436 The Ullmann Algorithm 436 Sample Runs 440 Summary 441 Atom Environment Fingerprints 441 Theoretical Background 441 Implementation 443 The Hashing Function 443 The Initial Atom Invariant 444 The Algorithm 444 Summary 447 References 447 Index 449

Show more
Product Details
EAN
9781119137962
ISBN
1119137969
Publisher
Dimensions
24.6 x 17.3 x 2.5 centimeters (0.73 kg)

Table of Contents

List of Contributors xv

Preface xvii

About the Companion Website xix           

Part 1 Chemical Databases 1

1 Data Curation 3
Gilles Marcou and Alexandre Varnek

Theoretical Background 3

Software 5

Step‐by‐Step Instructions 7

Conclusion 34

References 36

2 Relational Chemical Databases: Creation, Management, and Usage 37
Gilles Marcou and Alexandre Varnek

Theoretical Background 37

Step‐by‐Step Instructions 41

Conclusion 65

References 65

3 Handling of Markush Structures 67
Timur Madzhidov, Ramil Nugmanov, and Alexandre Varnek

Theoretical Background 67

Step‐by‐Step Instructions 68

Conclusion 73

References 73

4 Processing of SMILES, InChI, and Hashed Fingerprints 75
João Montargil Aires de Sousa

Theoretical Background 75

Algorithms 76

Step‐by‐Step Instructions 78

Conclusion 80

References 81

Part 2 Library Design 83

5 Design of Diverse and Focused Compound Libraries 85
Antonio de la Vega de Leon, Eugen Lounkine, Martin Vogt, and Jürgen Bajorath

Introduction 85

Data Acquisition 86

Implementation 86

Compound Library Creation 87

Compound Library Analysis 90

Normalization of Descriptor Values 91

Visualizing Descriptor Distributions 92

Decorrelation and Dimension Reduction 94

Partitioning and Diverse Subset Calculation 95

Partitioning 95

Diverse Subset Selection 97

Combinatorial Libraries 98

Combinatorial Enumeration of Compounds 98

Retrosynthetic Approaches to Library Design 99

References 101

Part 3 Data Analysis and Visualization 103

6 Hierarchical Clustering in R 105
Martin Vogt and Jürgen Bajorath

Theoretical Background 105

Algorithms 106

Instructions 107

Hierarchical Clustering Using Fingerprints 108

Hierarchical Clustering Using Descriptors 111

Visualization of the Data Sets 113

Alternative Clustering Methods 116

Conclusion 117

References 118

7 Data Visualization and Analysis Using Kohonen Self‐Organizing Maps 119
João Montargil Aires de Sousa

Theoretical Background 119

Algorithms 120

Instructions 121

Conclusion 126

References 126

Part 4 Obtaining and Validation QSAR/QSPR Models 127

8 Descriptors Generation Using the CDK Toolkit and Web Services 129
João Montargil Aires de Sousa

Theoretical Background 129

Algorithms 130

Step‐by‐Step Instructions 131

Conclusion 133

References 134

9 QSPR Models on Fragment Descriptors 135
Vitaly Solov’ev and Alexandre Varnek

Abbreviations 135

Data 136

ISIDA_QSPR Input 137

Data Split Into Training and Test Sets 139

Substructure Molecular Fragment (SMF) Descriptors 139

Regression Equations 142

Forward and Backward Stepwise Variable Selection 142

Parameters of Internal Model Validation 143

Applicability Domain (AD) of the Model 143

Storage and Retrieval Modeling Results 144

Analysis of Modeling Results 144

Root‐Mean Squared Error (RMSE) Estimation 148

Setting the Parameters 151

Analysis of n‐Fold Cross‐Validation Results 151

Loading Structure‐Data File 153

Descriptors and Fitting Equation 154

Variables Selection 155

Consensus Model 155

Model Applicability Domain 155

n‐Fold External Cross‐Validation 155

Saving and Loading of the Consensus Modeling Results 155

Statistical Parameters of the Consensus Model 156

Consensus Model Performance as a Function of Individual Models Acceptance Threshold 157

Building Consensus Model on the Entire Data Set 158

Loading Input Data 159

Loading Selected Models and Choosing their Applicability Domain 160

Reporting Predicted Values 160

Analysis of the Fragments Contributions 161

References 161

10 Cross‐Validation and the Variable Selection Bias 163
Igor I. Baskin, Gilles Marcou, Dragos Horvath, and Alexandre Varnek

Theoretical Background 163

Step‐by‐Step Instructions 165

Conclusion 172

References 173

11 Classification Models 175
Igor I. Baskin, Gilles Marcou, Dragos Horvath, and Alexandre Varnek

Theoretical Background 176

Algorithms 178

Step‐by‐Step Instructions 180

Conclusion 191

References 192

12 Regression Models 193
Igor I. Baskin, Gilles Marcou, Dragos Horvath, and Alexandre Varnek

Theoretical Background 194

Step‐by‐Step Instructions 197

Conclusion 207

References 208

13 Benchmarking Machine‐Learning Methods 209
Igor I. Baskin, Gilles Marcou, Dragos Horvath, and Alexandre Varnek

Theoretical Background 209

Step‐by‐Step Instructions 210

Conclusion 222

References 222

14 Compound Classification Using the scikit‐learn Library 223
Jenny Balfer, Jürgen Bajorath, and Martin Vogt

Theoretical Background 224

Algorithms 225

Step‐by‐Step Instructions 230

Naïve Bayes 230

Decision Tree 231

Support Vector Machine 234

Notes on Provided Code 237

Conclusion 238

References 239

Part 5 Ensemble Modeling 241

15 Bagging and Boosting of Classification Models 243
Igor I. Baskin, Gilles Marcou, Dragos Horvath, and Alexandre Varnek

Theoretical Background 243

Algorithm 244

Step by Step Instructions 245

Conclusion 247

References 247

16 Bagging and Boosting of Regression Models 249
Igor I. Baskin, Gilles Marcou, Dragos Horvath, and Alexandre Varnek

Theoretical Background 249

Algorithm 249

Step‐by‐Step Instructions 250

Conclusion 255

References 255

17 Instability of Interpretable Rules 257
Igor I. Baskin, Gilles Marcou, Dragos Horvath, and Alexandre Varnek

Theoretical Background 257

Algorithm 258

Step‐by‐Step Instructions 258

Conclusion 261

References 261

18 Random Subspaces and Random Forest 263
Igor I. Baskin, Gilles Marcou, Dragos Horvath, and Alexandre Varnek

Theoretical Background 264

Algorithm 264

Step‐by‐Step Instructions 265

Conclusion 269

References 269

19 Stacking 271
Igor I. Baskin, Gilles Marcou, Dragos Horvath, and Alexandre Varnek

Theoretical Background 271

Algorithm 272

Step‐by‐Step Instructions 273

Conclusion 277

References 278

Part 6 3D Pharmacophore Modeling 279

20 3D Pharmacophore Modeling Techniques in Computer‐Aided Molecular Design Using LigandScout 281
Thomas Seidel, Sharon D. Bryant, Gökhan Ibis, Giulio Poli, and Thierry Langer

Introduction 281

Theory: 3D Pharmacophores 283

Representation of Pharmacophore Models 283

Hydrogen‐Bonding Interactions 285

Hydrophobic Interactions 285

Aromatic and Cation‐π Interactions 286

Ionic Interactions 286

Metal Complexation 286

Ligand Shape Constraints 287

Pharmacophore Modeling 288

Manual Pharmacophore Construction 288

Structure‐Based Pharmacophore Models 289

Ligand‐Based Pharmacophore Models 289

3D Pharmacophore‐Based Virtual Screening 291

3D Pharmacophore Creation 291

Annotated Database Creation 291

Virtual Screening‐Database Searching 292

Hit‐List Analysis 292

Tutorial: Creating 3D‐Pharmacophore Models Using LigandScout 294

Creating Structure‐Based Pharmacophores From a Ligand‐Protein Complex 294

Description: Create a Structure‐Based Pharmacophore Model 296

Create a Shared Feature Pharmacophore Model From Multiple Ligand‐Protein Complexes 296

Description: Create a Shared Feature Pharmacophore and Align it to Ligands 297

Create Ligand‐Based Pharmacophore Models 298

Description: Ligand‐Based Pharmacophore Model Creation 300

Tutorial: Pharmacophore‐Based Virtual Screening Using LigandScout 301

Virtual Screening, Model Editing, and Viewing Hits in the Target Active Site 301

Description: Virtual Screening and Pharmacophore Model Editing 302

Analyzing Screening Results with Respect to the Binding Site 303

Description: Analyzing Hits in the Active Site Using LigandScout 305

Parallel Virtual Screening of Multiple Databases Using LigandScout 305

Virtual Screening in the Screening Perspective of LigandScout 306

Description: Virtual Screening Using LigandScout 306

Conclusions 307

Acknowledgments 307

References 307

Part 7 The Protein 3D‐Structures in Virtual Screening 311

21 The Protein 3D‐Structures in Virtual Screening 313
Inna Slynko and Esther Kellenberger

Introduction 313

Description of the Example Case 314

Thrombin and Blood Coagulation 314

Active Thrombin and Inactive Prothrombin 314

Thrombin as a Drug Target 314

Thrombin Three‐Dimensional Structure: The 1OYT PDB File 315

Modeling Suite 315

Overall Description of the Input Data Available on the Editor Website 315

Exercise 1: Protein Analysis and Preparation 316

Step 1: Identification of Molecules Described in the 1OYT PDB File 316

Step 2: Protein Quality Analysis of the Thrombin/Inhibitor PDB Complex Using MOE Geometry Utility 320

Step 3: Preparation of the Protein for Drug Design Applications 321

Step 4: Description of the Protein‐Ligand Binding Mode 325

Step 5: Detection of Protein Cavities 328

Exercise 2: Retrospective Virtual Screening Using the Pharmacophore Approach 330

Step 1: Description of the Test Library 332

Step 2.1: Pharmacophore Design, Overview 333

Step 2.2: Pharmacophore Design, Flexible Alignment of Three Thrombin Inhibitors 334

Step 2.3: Pharmacophore Design, Query Generation 335

Step 3: Pharmacophore Search 337

Exercise 3: Retrospective Virtual Screening Using the Docking Approach 341

Step 1: Description of the Test Library 341

Step 2: Preparation of the Input 341

Step 3: Re‐Docking of the Crystallographic Ligand 341

Step 4: Virtual Screening of a Database 345

General Conclusion 350

References 351

Part 8 Protein‐Ligand Docking 353

22 Protein‐Ligand Docking 355
Inna Slynko, Didier Rognan, and Esther Kellenberger

Introduction 355

Description of the Example Case 356

Methods 356

Ligand Preparation 359

Protein Preparation 359

Docking Parameters 360

Description of Input Data Available on the Editor Website 360

Exercises 362

A Quick Start with LeadIT 362

Re‐Docking of Tacrine into AChE 362

Preparation of AChE From 1ACJ PDB File 362

Docking of Neutral Tacrine, then of Positively Charged Tacrine 363

Docking of Positively Charged Tacrine in AChE in Presence of Water 365

Cross‐Docking of Tacrine‐Pyridone and Donepezil Into AChE 366

Preparation of AChE From 1ACJ PDB File 366

Cross‐Docking of Tacrine‐Pyridone Inhibitor and Donepezil in AChE in Presence of Water 367

Re‐Docking of Donepezil in AChE in Presence of Water 370

General Conclusions 372

Annex: Screen Captures of LeadIT Graphical Interface 372

References 375

Part 9 Pharmacophorical Profiling Using Shape Analysis 377

23 Pharmacophorical Profiling Using Shape Analysis 379
Jérémy Desaphy, Guillaume Bret, Inna Slynko, Didier Rognan, and Esther Kellenberger

Introduction 379

Description of the Example Case 380

Aim and Context 380

Description of the Searched Data Set 381

Description of the Query 381

Methods 381

Rocs 381

VolSite and Shaper 384

Other Programs for Shape Comparison 384

Description of Input Data Available on the Editor Website 385

Exercises 387

Preamble: Practical Considerations 387

Ligand Shape Analysis 387

What are ROCS Output Files? 387

Binding Site Comparison 388

Conclusions 390

References 391

Part 10 Algorithmic Chemoinformatics 393

24 Algorithmic Chemoinformatics 395
Martin Vogt, Antonio de la Vega de Leon, and Jürgen Bajorath

Introduction 395

Similarity Searching Using Data Fusion Techniques 396

Introduction to Virtual Screening 396

The Three Pillars of Virtual Screening 397

Molecular Representation 397

Similarity Function 397

Search Strategy (Data Fusion) 397

Fingerprints 397

Count Fingerprints 397

Fingerprint Representations 399

Bit Strings 399

Feature Lists 399

Generation of Fingerprints 399

Similarity Metrics 402

Search Strategy 404

Completed Virtual Screening Program 405

Benchmarking VS Performance 406

Scoring the Scorers 407

How to Score 407

Multiple Runs and Reproducibility 408

Adjusting the VS Program for Benchmarking 408

Analyzing Benchmark Results 410

Conclusion 414

Introduction to Chemoinformatics Toolkits 415

Theoretical Background 415

A Note on Graph Theory 416

Basic Usage: Creating and Manipulating Molecules in RDKit 417

Creation of Molecule Objects 417

Molecule Methods 418

Atom Methods 418

Bond Methods 419

An Example: Hill Notation for Molecules 419

Canonical SMILES: The Canon Algorithm 420

Theoretical Background 420

Recap of SMILES Notation 420

Canonical SMILES 421

Building a SMILES String 422

Canonicalization of SMILES 425

The Initial Invariant 427

The Iteration Step 428

Summary 431

Substructure Searching: The Ullmann Algorithm 432

Theoretical Background 432

Backtracking 433

A Note on Atom Order 436

The Ullmann Algorithm 436

Sample Runs 440

Summary 441

Atom Environment Fingerprints 441

Theoretical Background 441

Implementation 443

The Hashing Function 443

The Initial Atom Invariant 444

The Algorithm 444

Summary 447

References 447

Index 449

About the Author

Edited by

Alexandre Varnek, PhD, is a professor of theoretical chemistry at The University of Strasbourg, France where he heads the Laboratory of Chemoinformatics, and is Director of two MSc programs: Chemoinformatics and In Silico Drug Design. Professor Varnek's research focuses on developing new approaches and tools for virtual screening and "in silico" design of new compounds and chemical reactions.

Show more
Review this Product
Ask a Question About this Product More...
 
Look for similar items by category
Item ships from and is sold by Fishpond World Ltd.

Back to top